Answer:
The drag coefficient is
Explanation:
From the question we are told that
The density of air is 
The diameter of bottom part is
The power trend-line equation is mathematically represented as

let assume that the velocity is 20 m/s
Then


The drag coefficient is mathematically represented as

Where
is the drag force
is the density of the fluid
is the flow velocity
A is the area which mathematically evaluated as

substituting values


Then

Answer:
Distance, d = 0.1 m
It is given that,
Initial velocity of meson,
Finally, the meson is coming to rest v = 0
Acceleration of the meson, (opposite to initial velocity)
Using third equation of motion as :
s is the distance the meson travelled before coming to rest.
So,
s = 0.1 m
The meson will cover the distance of 0.1 m before coming to rest. Hence, this is the required solution.
Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
To perform an experiment to determine the force constant of a spring, you will need a stand with a boss and clamp, a spiral spring, a meter rule and different weights.
The setup is arranged as shown in the image attached. The natural length of the spring is first recorded. Different weights are added to the spring one after the other and the extension is recorded.
The weight is now plotted on the vertical axis and the extension is plotted on the horizontal axis. The slope of the graph is the force constant of the spring.
Learn more: brainly.com/question/10991960