That's false. Mechanical waves (like sound and ocean waves) do
need a medium to travel in, but electromagnetic waves (like radio
and light) don't.
Answer:
595391.482946 m/s

Explanation:
E = Energy = 1.85 keV
I = Current = 5.15 mA
e = Charge of electron = 
t = Time taken = 1 second
m = Mass of proton = 
Velocity of proton is given by

The speed of the proton is 595391.482946 m/s
Current is given by

Number of protons is

The number of protons is 
Answer:
A, total.
<em>The </em><em>total</em><em> energy in a mechanical system is determined by adding the potential and kinetic enters together.</em>
<em />
<u><em>i hope this helped at all.</em></u>
<em />
Stay at rest unless moved my force! :)
There are many factors that determine if an aircraft can operate from a given airport. Of course the availability of certain services, such as fuel, access to air stairs and maintenance are all necessary. But before considering anything else, one must determine if the plane can physically land at an airport, and equally as important, take off.
What is the minimum runway length that will serve?
Looking at aerial views of runways can lead some to the assumption that they are all uniform, big and appropriate for any plane to land. This couldn’t be further from the truth.
A given aircraft type has its own individual set of requirements in regards to these dimensions. The classic 150’ wide runway that can handle a wide-body plane for a large group charter flight isn’t a guarantee at every airport. Knowing the width of available runways is important for a variety of reasons including runway illusion and crosswind condition.
Runways also have different approach categories based on width, and have universal threshold markings that indicate the actual width.
To learn more about runway
brainly.com/question/11553726
#SPJ4