Answer:
The distance between A and D to the nearest tenth is;

Explanation:
Given the two points;

Applying the distance between two points formula;
![d=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
substituting the given coordinates we have;
![\begin{gathered} AD=\sqrt[]{(-3-6)^2+(-2-2)^2} \\ AD=\sqrt[]{(-9)^2+(-4)^2} \\ AD=\sqrt[]{81+16} \\ AD=\sqrt[]{97} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20AD%3D%5Csqrt%5B%5D%7B%28-3-6%29%5E2%2B%28-2-2%29%5E2%7D%20%5C%5C%20AD%3D%5Csqrt%5B%5D%7B%28-9%29%5E2%2B%28-4%29%5E2%7D%20%5C%5C%20AD%3D%5Csqrt%5B%5D%7B81%2B16%7D%20%5C%5C%20AD%3D%5Csqrt%5B%5D%7B97%7D%20%5Cend%7Bgathered%7D)
Simplifying;

Therefore, the distance between A and D to the nearest tenth is;
Answer:
discriminant: 241
2 real roots
Step-by-step explanation:
The discriminant is the part of the quadratic equation that is under the sqare root
x=(-b±√(b²-4ac))/2a
discriminant: b²-4ac
We also know that a quadratic equation is in the form ax²+bx+c = 0, so we can plug in the values we know from our equation to find the discriminant.
a=4
b=-17
c=3
(-17)^2-4(4)(3)
We also know that if the discriminant
is positive we have 2 real roots
is 0 we have 1 real root aka a repeated real solution
is negative we have no real roots