Answer:
c) bajo: $1.62; mediano: $1.80; grande: $2.03
Step-by-step explanation:
Insert numbers from the table into a linear equation (ignore time column) and use Cramer's Rule.
55x+53y+54z=299.12
17x+22y+25z=117.89
30x+23y+29z=148.97
x, bajo = 1.62
y, mediano = 1.8
z, grande = 2.03
Answer:
Actual volume=3,773,000 in³
Step-by-step explanation:
Scale 1:35
Actual Width=Model Width×Scale factor=(2×35)=70 inches
Actual Length=Model Length×Scale factor=(11×35)=385 inches
Actual Height=Model Height×Scale factor=(4×35)=140 inches
Actual volume =(Base Area×Height)=Length×width×height=(385×70×140)=3,773,000 in³
Actual volume=3,773,000 in³
<span>You can probably just work it out.
You need non-negative integer solutions to p+5n+10d+25q = 82.
If p = leftovers, then you simply need 5n + 10d + 25q ≤ 80.
So this is the same as n + 2d + 5q ≤ 16
So now you simply have to "crank out" the cases.
Case q=0 [ n + 2d ≤ 16 ]
Case (q=0,d=0) → n = 0 through 16 [17 possibilities]
Case (q=0,d=1) → n = 0 through 14 [15 possibilities]
...
Case (q=0,d=7) → n = 0 through 2 [3 possibilities]
Case (q=0,d=8) → n = 0 [1 possibility]
Total from q=0 case: 1 + 3 + ... + 15 + 17 = 81
Case q=1 [ n + 2d ≤ 11 ]
Case (q=1,d=0) → n = 0 through 11 [12]
Case (q=1,d=1) → n = 0 through 9 [10]
...
Case (q=1,d=5) → n = 0 through 1 [2]
Total from q=1 case: 2 + 4 + ... + 10 + 12 = 42
Case q=2 [ n + 2 ≤ 6 ]
Case (q=2,d=0) → n = 0 through 6 [7]
Case (q=2,d=1) → n = 0 through 4 [5]
Case (q=2,d=2) → n = 0 through 2 [3]
Case (q=2,d=3) → n = 0 [1]
Total from case q=2: 1 + 3 + 5 + 7 = 16
Case q=3 [ n + 2d ≤ 1 ]
Here d must be 0, so there is only the case:
Case (q=3,d=0) → n = 0 through 1 [2]
So the case q=3 only has 2.
Grand total: 2 + 16 + 42 + 81 = 141 </span>
Mr. Jackson invested $800 at 6% per year and $ 2400 at 4 % per year
<h3><u>Solution:</u></h3>
Mr. Jackson invested a sum of money at 6% per year, and 3 times as much at 4% per year.
Let the sum invested be ‘a’ and ‘3a’ at 6% per year and 4 % per year respectively
Also, his annual return totaled $144
We can form following equation on the basis of question:-
a = $800
The amount of money invested at 6% = a = 800
The amount of money invested at 4 % = 3a = 3(800) = 2400
So, the amount of money invested at 6% is $800 and the amount of money invested at 4% is $ 2400