Answer:
14-8
12-9
0-15
2-14
Step-by-step explanation:
Answer:
3n + 2
Step-by-step explanation:
You need to ask your teacher for any help and to evaluate and double check each step.
Answer:
A. 7,348
Step-by-step explanation:
P = le^kt
intitial population = 500
time = 4 hrs
end population = 3,000
So we have all these variables and we need to solve for what the end population will be if we change the time to 6 hours. First, we need to find the rate of the growth(k) so we can plug it back in. The given formula shows a exponencial growth formula. (A = Pe^rt) A is end amount, P is start amount, e is a constant that you can probably find on your graphing calculator, r is the rate, and t is time.
A = Pe^rt
3,000 = 500e^r4
now we can solve for r
divide both sides by 500
6 = e^r4
now because the variable is in the exponent, we have to use a log

ln(6) = 4r
we can plug the log into a calculator to get
1.79 = 4r
divide both sides by 4
r = .448
now lets plug it back in
A = 500e^(.448)(6 hrs)
A = 7351.12
This is closest to answer A. 7,348
Answer:
Step-by-step explanation:
4q2 + 2q + 3
(2q - 2) l _ 8q3 - 4q2 - q + 6
8q3 - 8q2
_ 4q2 - q
4q2 - 4q
_ 3q + 6
6q + 6
-3q (remainder)
4q2 + 2q + 3 -3q / (2q - 2)
hope this helps