Answer:
F = 294.3 [N]
Explanation:
To solve this problem we must use Newton's second law which tells us that force is equal to the product of mass by acceleration. It is this particular case the acceleration is due to the gravitational acceleration since the body is in free fall.
Therefore we have:
F = m*g
where:
F = force [N]
m = mass = 30 [kg]
g = gravity acceleration = 9.81 [m/s^2]
F = 30*9.81
F = 294.3 [N]
<h2>
Answer: 1.252</h2>
Explanation:
We are given this equation and we need to find the value of
:
(1)
Firstly, we have to clear
:
(2)
Applying<u> Natural Logarithm</u> on both sides of the equation (2):
(3)
(4)
According to the Natural Logarithm rules
, so (4) can be written as:
(5)
Finally:
Answer: For 18 the inch is longer im not sure by how much, for 19 the the kilogram is 2.2 times heavier than a pound, QUART IS A LITTLE LESS THAN A LITER. ... An easy way to figure from liters to gallons, for example, is that a quart is a little less than a liter and 4 liters is a little more than 1 gallon. To be exact, 1 liter is 0.264 gallon (a little more than a quart), and 4 liters is 1.06 gallons, 30°C or 30°F? Correct answer: the table shows that 30°C is about 86°F, which is warmer than 30°F. And sorry Im not sure how to do the rest
Explanation:
Answer:
A) v_average = - 10 km / h, B) v = 1.6 m / s, v = 17.6 m / s
Explanation:
A) the average speed is the average speed of a body, if we assume that the direction of going up the hill is positive
v₁ = 40 km / h
v₂ = - 60 km / h
the average speed is
v_average =
v_average = ( 40 - 60)/2
v_average = - 10 km / h
B) in this case they indicate the acceleration a = 3.2 m / s² and the velocity vo = 9.6 m / s
i) the speed for 2.5 s above
v = v₀ + a t
as the time is earlier
t = - 2.5 s
we substitute
v = 9.6 - 3.2 2.5
v = 1.6 m / s
ii) the velocity for a subsequent time of 2.5 s
t = 2.5 s
we substitute
v = 9.6 + 3.2 2.5
v = 17.6 m / s
Answer:
a) True
b)False
c)False
• Had to complete the question first.
A block slides at constant speed down a ramp while acted on by three forces: its weight, the normal force, and kinetic friction. Respond to each statement, true or false.
(a) The combined net work done by all three forces on the block equals zero.
(b) Each force does zero work on the block as it slides.
(c) Each force does negative work on the block as it slides.
Explanation:
Net work is the change in kinetic energy, which leads to final kinetic energy - our initial kinetic energy this is the formula for net work. This is the working energy theorem, a theorem that states that the net work on an object induces a change in the object's kinetic energy.