Answer:
A
Explanation:



hope it helped a lot
pls mark brainliest with due respect .
A long string carries the wave; a segment of the string measuring 6.00 meters in length and weighing 180 grams contains four full wavelengths. The string vibrates sinusoidally at a 50.0 Hz frequency with a 15.0 cm peak-to-valley displacement. The vertical distance between the farthest positive and negative positions is known as the "peak-to-valley" distance. The function that describes this wave traveling in the positive x direction is
.

If phase constant is
then
equation is ![$y=7.5 \times 10^{-2} \sin \left[100 \pi t-\frac{4 \pi}{3} x+\phi\right]$](https://tex.z-dn.net/?f=%24y%3D7.5%20%5Ctimes%2010%5E%7B-2%7D%20%5Csin%20%5Cleft%5B100%20%5Cpi%20t-%5Cfrac%7B4%20%5Cpi%7D%7B3%7D%20x%2B%5Cphi%5Cright%5D%24)
∴ equation is 
- A wave is a disturbance that moves from one location to another, carrying energy but not always matter.
- The square of the equation provides a probability density map of the locations where an electron has a specific statistical likelihood to be at any given moment in time. Wave functions have no direct physical meaning.
To know more about Wave functions visit : brainly.com/question/3639648
#SPJ4
Answer:
The neuron is the basic working unit of the brain, a specialized cell designed to transmit information to other nerve cells, muscle, or gland cells. Neurons are cells within the nervous system that transmit information to other nerve cells, muscle, or gland cells. Most neurons have a cell body, an axon, and dendrites.
Answer:
The direction of the magnetic field causing this force is
In the plane of the screen and towards the bottom of the egde
Explanation:
This is by applying Fleming s right hand rule which explains that
When a conductor such as a wire attached to a circuit moves through a magnetic field, an electric current is induced in the wire due to Faraday's law of induction. The current in the wire can have two possible directions. Fleming's right-hand rule gives which direction the current flows.
The right hand is held with the thumb, index finger and middle finger mutually perpendicular to each other (at right angles), as shown in the diagram.[1]
The thumb is pointed in the direction of the motion of the conductor relative to the magnetic field.
The first finger is pointed in the direction of the magnetic field. (north to south)
Then the second finger represents the direction of the induced or generated current within the conductor (from the terminal with lower electric potential to the terminal with higher electric potential, as in a voltage source)
Your answer is most likely:
<span>B) They are protective of their owners. </span>