Answer
C.The traditional flow of current is positive to negative and the flow of electrons is the opposite
Explanation:
Answer:
(a) The second wire will be stretched by 2 mm
(b) The third wire will be stretched by 0.25 mm
Explanation:
Tensile stress on every engineering material is given as the ratio of applied force to unit area of the material.
σ = F / A
Tensile strain on every engineering material is given as the ratio of extension of the material to the original length
δ = e / L
The ratio of tensile stress to tensile strain is known as Young's modulus of the material.

<u></u>
<u>Part A</u>
cross sectional area and applied force are the same as the original but the length is doubled

The second wire will be stretched by 2 mm
<u>Part B</u>
a third wire with the same length but twice the diameter of the first

e₁ = ¹/₄ x 1 mm = 0.25 mm
The third wire will be stretched by 0.25 mm
Answer:
When the pressure and the temperature are increased the volume is 285.7 ml.
Explanation:
We can find the new volume by using the Ideal Gas Law:

Where:
P: is the pressure
V: is the volume
n: is the number of moles
R: is the gas constant
T: is the temperature
Initially, when V₁ = 200 ml, P₁ = 500 torr and T₁ = 10 °C, we have:
(1)
And finally, when P₂ = 700 torr and T₂ = 20 °C, we have:
(2)
By equating (1) with (2):
Therefore, when the pressure and the temperature are increased the volume is 285.7 ml.
I hope it helps you!
Explanation:
It is given that,
The velocity of a particle is given by :

Where
v is in m/s and t is in seconds
Let a is the acceleration of the object at time t. So,



When a = 0

t = 2.5 s
a is zero at t = 2.5 s. Velocity, 
v = -75 m/s
Since,
, s is the distance travelled



At t = 2.5 s, 
s = −83.34 m
Hence, this is the required solution.