Might be 134 because since angle 2 and 8 are lined up like that it is same side exterior angles which means they are supplementary from each other so they will equal 180. So I did 180-46 to get 134, I’m not sure if I’m correct
The decision rule for rejecting the null hypothesis, considering the t-distribution, is of:
- |t| < 1.9801 -> do not reject the null hypothesis.
- |t| > 1.9801 -> reject the null hypothesis.
<h3>What are the hypothesis tested?</h3>
At the null hypothesis, it is tested if there is not enough evidence to conclude that the mean voltage for these two types of batteries is different, that is, the subtraction of the sample means is of zero, hence:

At the alternative hypothesis, it is tested if there is enough evidence to conclude that the mean voltage for these two types of batteries is different, that is, the subtraction of the sample means different of zero, hence:

We have a two-tailed test, as we are testing if the mean is different of a value.
Considering the significance level of 0.05, with 75 + 46 - 2 = 119 df, the critical value for the test is given as follows:
|t| = 1.9801.
Hence the decision rule is:
- |t| < 1.9801 -> do not reject the null hypothesis.
- |t| > 1.9801 -> reject the null hypothesis.
More can be learned about the t-distribution in the test of an hypothesis at brainly.com/question/13873630
#SPJ1
Answer:
600
Step-by-step explanation:
Please don't report I tried my best
Taking the derivative of 7 times secant of x^3:
We take out 7 as a constant focus on secant (x^3)
To take the derivative, we use the chain rule, taking the derivative of the inside, bringing it out, and then the derivative of the original function. For example:
The derivative of x^3 is 3x^2, and the derivative of secant is tan(x) and sec(x).
Knowing this: secant (x^3) becomes tan(x^3) * sec(x^3) * 3x^2. We transform tan(x^3) into sin(x^3)/cos(x^3) since tan(x) = sin(x)/cos(x). Then secant(x^3) becomes 1/cos(x^3) since the secant is the reciprocal of the cosine.
We then multiply everything together to simplify:
sin(x^3) * 3x^2/ cos(x^3) * cos(x^3) becomes
3x^2 * sin(x^3)/(cos(x^3))^2
and multiplying the constant 7 from the beginning:
7 * 3x^2 = 21x^2, so...
our derivative is 21x^2 * sin(x^3)/(cos(x^3))^2