Answer:
1.23x10^-6 mole
Explanation:
A clear understanding of Avogadro's hypothesis proved that 1mole of any substance contains 6.02x10^23 atoms. This indicates that 1mole of Ag contains 6.02x10^23 atoms.
Now, 1f 1mole of Ag contains 6.02x10^23 atoms, then Xmol of Ag will contain 7.41x10^17 atoms i.e
Xmol of Ag = 7.41x10^17/6.02x10^23 = 1.23x10^-6 mole
Answer:
the process in which energy is emitted by one object, transmitted through space, and absorbed by another
Explanation:
Radiation is energy that comes from a source and travels through space and may be able to penetrate various materials. Light, radio, and microwaves are
types of radiation that are called nonionizing.
Explanation:
The emission of a beta particle is the result of the rearrangement of the unstable nucleus of the radioactive atom in order to acquire stability. For that, a phenomenon occurs in the nucleus, in which a neutron decomposes giving rise to three new particles: a proton, an electron (β particle), and a neutrino. The antineutrino and electron are emitted. The proton, however, remains in the nucleus.
The symbol is used to represent beta particles.
Answer: b. Beta
Explanation:
As it is known that molarity is the number of moles present in a liter of solution.
Mathematically, Molarity = 
As it is given that molarity is 0.10 M and volume is 10.0 ml. As 1 ml equals 0.001 L. Therefore, 10.0 ml will also be equal to 0.01 L.
Hence, putting these values into the above formula as follows.
Molarity = 
0.10 M = 
no. of moles = 0.001 mol
As molar mass of KCN is equal to 65.12 g/mol. Therefore, calculate the mass of KCN as follows.
No. of moles = 
0.001 mol = 
mass = 0.06152 g
Thus, we can conclude that 0.06152 grams of KCN are in 10.0 ml of a 0.10 M solution.
Answer:
The size of an isolated atom can't be measured because we can't determine the location of the electrons that surround the nucleus. We can estimate the size of an atom, however, by assuming that the radius of an atom is half the distance between adjacent atoms in a solid. This technique is best suited to elements that are metals, which form solids composed of extended planes of atoms of that element. The results of these measurements are therefore often known as metallic radii.
.Explanation: