Explanation:
The chemical reaction given in the question is as follows -
MnO₄⁻ (aq) + 8H⁺ (aq) + 5e⁻ → Mn²⁺ (aq) + 4H₂O (l)
NO₃⁻ (aq) + 4H⁺ (aq) + 3e⁻ → NO (g) + 2H₂O (l)
As we know , the value for reduction potential are -
Mn²⁺ = + 1.51 V
NO₃⁻ = +0.96 V
From , the data given above , the value of the reduction potential of NO₃⁻ is less than the reduction potential of Mn²⁺ .
Hence ,
NO₃⁻ can not oxidize Mn²⁺ .
1. True 2. False 3.false 4. False 5. True
Activation energy is the minimum amount of energy that the colliding reactant molecules must possess for the formation of products. Lower the activation energy, higher will be chance of formation of products. So activation energy is the minimum energy requirement that has to overcome for the reaction to be completed. Therefore, when in a chemical reaction the reactant molecules do not collide with required activation energy, the collisions will not be fruitful even if they are properly oriented which means that the products will not form.
Hence the correct answer will be B.) no products will be formed