During nuclear fission, great amounts of energy are produced from____.
Answer: Out of all the options presented above, the one that completes the statement and makes it true, is answer choice D) very small amounts of mass. Nuclear fission power does not produce carbon and also produces 12% of the world's power.
I hope it helps, Regards.
Mass of this substance = 9.928 g
<h3>Further explanation</h3>
Molarity is a way to express the concentration of the solution
Molarity shows the number of moles of solute in every 1 liter of solute or mmol in each ml of solution

Where
M = Molarity
n = Number of moles of solute
V = Volume of solution
So to find the number of moles can be expressed as

mol of substance -Lithium nitrite - LiNO₂ :
V = 250 ml = 0.25 L
M = 0.75 M

So mass of this substance - LiNO₂ (MW=52,947 g/mol) :

Answer:
the mass number is the number of protons and neutrons added and the average atomic mass is the weight of the protons and neutrons
Answer:
Hey mate, here is your answer. Hope it helps you.
Explanation:
To show how substances in a chemical reaction interact and to keep track of all elements and the number of atoms in each element on each side of the equation.The purpose of writing a balanced chemical equation is to know: the reactants (starting material) and products (end results) that occur. the ratios in which they react so you can calculate how much reactants you need and how much products can be formed.
Answer:
46.761g/mol
Explanation:
Given parameters:
Element = Hilarium , Hi
Isotopes: Hi- 45, Hi-46 and Hi- 48
Natural abundance of Hi-45 = 18.3%
Hi-46 = 34.5%
Hi-48 = 47.2%
Unknown:
Atomic weight of naturally occurring Hilarium = ?
Solution:
Isotopes have been studied extensively by mass spectrometry. The method is used to determine the proportion/percentage/fraction by which each of the isotopes of an element occurs in nature. The proportion is called geonormal abundance. From this we can calculate the atomic weight of an element.
We can use the expression below to find this value:
Atomic weight = m₄₅α₄₅ + m₄₆α₄₆ + m₄₈α₄₈
m is the atomic mass of each isotope and α is the abundance
Atomic weight = (45 x
) + (46 x
) + (48 x
)
Atomic weight of Hi = 8.235 + 15.870 + 22.656 = 46.761g/mol