Consider the operation is
.
Given:
The augmented matrix below represents a system of equations.
![\left[\left.\begin{matrix}1&0&1\\1&3&-1\\3&2&0\end{matrix}\right|\begin{matrix}-1\\-9\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C1%263%26-1%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C-9%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
To find:
Matrix results from the operation
.
Step-by-step explanation:
We have,
![\left[\left.\begin{matrix}1&0&1\\1&3&-1\\3&2&0\end{matrix}\right|\begin{matrix}-1\\-9\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C1%263%26-1%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C-9%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
After applying
, we get
![\left[\left.\begin{matrix}1&0&1\\-3(1)&-3(3)&-3(-1)\\3&2&0\end{matrix}\right|\begin{matrix}-1\\-3(-9)\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C-3%281%29%26-3%283%29%26-3%28-1%29%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C-3%28-9%29%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
![\left[\left.\begin{matrix}1&0&1\\-3&-9&3\\3&2&0\end{matrix}\right|\begin{matrix}-1\\27\\-2\end{matrix}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cleft.%5Cbegin%7Bmatrix%7D1%260%261%5C%5C-3%26-9%263%5C%5C3%262%260%5Cend%7Bmatrix%7D%5Cright%7C%5Cbegin%7Bmatrix%7D-1%5C%5C27%5C%5C-2%5Cend%7Bmatrix%7D%5Cright%5D)
Therefore, the correct option is A.
Answer:
223
Step-by-step explanation:
Determine the slope and y-intercept from the following equation: 4x + y = -10
Question 9 options:
slope: 4 y-intercept: (0,10)
slope: -4 y-intercept: (0,10)
slope: -4 y-intercept: (0,-10)
slope: 4 y-interce
The hardest part is finding the length of the curve at the top. To find arc length, multiply the circumference by the arc angle divided by full angle (360°) in a circle. Or:

x, the arc angle in a semicircle, is 180°.
r, the radius is 7/2 = 3.5.
Now just plug the numbers in and solve for arc length, s.
s = 2π(3.5)(1/2) ≈ 11.00
Now just add up all the sides. 11cm + 10cm + 10cm + 7cm = 38 cm.
As the 2 quadrilaterals are congruent the sides of one quadrilateral are equal to the corresponding sides of the other quadrilateral
Hence,
AB = PQ
RQ = BC
AD = PS
DC = RS
Since terms for both AB and PQ are given we can equate the terms and find m
5m -9 = m + 11
5m -m = 11 + 9
4m = 20
m = 5
Correct answer is D , 5