Answer:
4 ounces = 1/4 lbs (pounds) 1/3 of 66 is 22
Hello from MrBillDoesMath!
Answer:
a(n) = (-n)^3 where n = 1,2,3,...
Discussion:
The pattern 1,8,27, 64... is immediately recognizable as the the cube of the positive integers. But this question has a minus sign appearing before each entry, suggesting we try this:
- 1 = (-1)^3
-8 = (-2)^3
-27 = (-3)^3
-64 = (-4)^3
That's what the problem statement asked for
. The answer is equivalently
-1 * (n^3)
Thank you,
MrB
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7
<span>10x+y=19
when x = 10:
substitute with x=10 into the equation given:
10(10) + y = 19
or:
100 + y = 19
bring 100 to the other side to be -100
y = 19 - 100
y = -81
That's it
</span>