Answer:
i don't know. it doesn't depend my major. so hard for me
Ur asking for slope intercept form, but ur answer choices are in point slope form....so I am gonna find the answer in point slope form.
y - y1 = m(x - x1)
slope(m) = 2/3
(5,-3)....x1 = 5 and y1 = -3
now we sub...but pay very close attention to ur signs
y - (-3) = 2/3(x - 5) =
y + 3 = 2/3(x - 5) <=== ur answer in point slope form
Answer:
9b) -8 = y
9a) 72° = <em>m</em>∠<em>ABC</em>
Step-by-step explanation:
Since you have an angle trisector, in this case, <em>m</em>∠<em>CBE</em><em> </em>≅ <em>m</em>∠<em>DBA,</em><em> </em>therefore you <em>set</em><em> </em><em>x</em><em> </em>equal to 8, plus, according to Morley's Trisector Theorem, all three angles form an equilateral triangle, so <em>m</em>∠<em>BOC</em><em> </em>also has to equal 24°:

Then, <em>m</em>∠<em>ABC</em><em> </em>comes from multiplying 3 by 24 [three <em>twenty-</em><em>four</em>'s], which results in 72°.
I am joyous to assist you anytime.
Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ