Answer:
The procedure for calculating the pH of a solution of a weak base is similar to that of the weak acid in the sample problem. However, the variable x will represent the concentration of the hydroxide ion. The pH is found by taking the negative logarithm to get the pOH, followed by subtracting from 14 to get the pH.
Explanation:
Answer:
True
Explanation:
Hydrogen has three naturally occuring isotopes and copper has two.
The number of covalent bonds that an atom can make is determined by the no. of electrons needed to form a duplet or octet of electron by each of the atom.
The balanced chemical equation for the combustion of butane is:

Δ
= Σ
Δ
-Σ
Δ
=
=[-3148kJ/mol+(-2418.2kJ/mol)]-[(-251.2kJ/mol)+0]
= -5315 kJ/mol
Calculating the enthalpy of combustion per mole of butane:

Therefore the heat of combustion per one mole butane is -2657.5 kJ/mol
Correct answer: -2657.5 kJ/mol
Q1)
firstly we need to determine the empirical formula of the compound. empirical formula is the simplest ratio of components in the compound.
percentages of the elements have been given, so lets assume we are calculating for a compound of 100g
C H O
mass 63.13 g 8.830 g 28.03 g
molar mass 12 g/mol 1 g/mol 16 g/mol
number of moles 63.13/12 8.830/1 28.03/16
5.26 8.830 1.75
divide by the smallest number of moles
5.26/1.75 8.830/1.75 1.75/1.75
= 3.01 = 5.04 =1
rounded off to the nearest whole numbers
C - 3
H - 5
O - 1
therefore empirical formula = C₃H₅O
Q2)
we have to next determine the molecular formula of the compound
molecular formula gives the actual composition of elements in the compound.
since we know the empirical formula and molecular mass, we can find how many empirical units are in the molecular formula.
mass of empirical unit = Cx3 + Hx5 + Ox1
= 12 g/mol x 3 + 1g/mol x 5 + 16 g/mol x 1
= 36 + 5 + 16 = 57 g/mol
the molecular mass = 228 g/mol
then number of empirical units in the molecular formula = 228 / 57 = 4
therefore there are 4 empirical units
then the molecular formula = 4 x empirical formula =4 (C₃H₅O)
molecular formula = C₁₂H₂₀O₄