With ϕ ≈ 1.61803 the golden ratio, we have 1/ϕ = ϕ - 1, so that
![I = \displaystyle \int_0^\infty \frac{\sqrt[\phi]{x} \tan^{-1}(x)}{(1+x^\phi)^2} \, dx = \int_0^\infty \frac{x^{\phi-1} \tan^{-1}(x)}{x (1+x^\phi)^2} \, dx](https://tex.z-dn.net/?f=I%20%3D%20%5Cdisplaystyle%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7B%5Csqrt%5B%5Cphi%5D%7Bx%7D%20%5Ctan%5E%7B-1%7D%28x%29%7D%7B%281%2Bx%5E%5Cphi%29%5E2%7D%20%5C%2C%20dx%20%3D%20%5Cint_0%5E%5Cinfty%20%5Cfrac%7Bx%5E%7B%5Cphi-1%7D%20%5Ctan%5E%7B-1%7D%28x%29%7D%7Bx%20%281%2Bx%5E%5Cphi%29%5E2%7D%20%5C%2C%20dx)
Replace
:

Split the integral at x = 1. For the integral over [1, ∞), substitute
:

The integrals involving tan⁻¹ disappear, and we're left with

B, -3x+15=23 is the answer
Answer:
The correct answer is D- 29,544 ovens
Step-by-step explanation:
To find the answer, we simply need to find 20% of 24,620 ovens and add it to that sum. To find 20% of 24,620, we can simply multiply 24,620 by .2.
24,620*.2=4924
Then, add the extra 4924 to 24,620
4924+24620=29544
The correct answer is 29,544 ovens
Hope this helps! :D
Answer:
no
Step-by-step explanation:
I goo.g.led, sorry me dum lol