The answer is B.
1.5+1.5 is 3.
The end parts of the track are 0.25
1.5+1.5+0.25+0.25=3.5
Answer:
The mean of the distribution of heights of students at a local school is 63 inches and the standard deviation is 4 inches.
Step-by-step explanation:
The normal curve approximating the distribution of the heights of 1000 students at a local school is shown below.
For a normal curve, the mean, median and mode are the same and represents the center of the distribution.
The center of the normal curve below is at the height 63 inches.
Thus, the mean of the distribution of heights of students at a local school is 63 inches.
The standard deviation represents the spread or dispersion of the data.
From the normal curve it can be seen that values are equally distributed, i.e. the difference between two values is of 4 inches.
So, the standard deviation is 4 inches.
Answer:
g(x) = -9
Step-by-step explanation:
g(x) = 1 - 2x substitute 5 for x
g(x) = 1 - 2(5) solve parenthesis first
g(x) = 1 - 10 subtract
g(x) = -9
<h3>
Answers: 48 and 72</h3>
=========================================================
Explanation:
The number 12 is a multiple of 3 because 3*4 = 12.
So when looking for common multiples of 3 and 12, we simply need to look at multiples of 12.
The multiples of 12 are:
- 12, 24, 36, 48, 60, 72, 84, 96, 120, ...
We see that 48 and 72 are on the list. The values 21, 27, 63, 81 are not on the list, so cross them out.
Now we could keep that list of multiples going to see if 844 is on there or not. A better method is to divide 844 over 12. If we get a whole number, then it's a multiple of 12.
844/12 = 70.333 approximately.
This shows that 844 is <u>not</u> a multiple of 12. So we cross 844 from the list.
Only 48 and 72 are multiples of 12 (and also multiples of 3).
It is two thousand, so C. I use the multiplication where you put one number above the other.