A factorization of
is
.
<h3>What are the properties of roots of a polynomial?</h3>
- The maximum number of roots of a polynomial of degree
is
. - For a polynomial with real coefficients, the roots can be real or complex.
- The complex roots of a polynomial with real coefficients always exist in a pair of conjugate numbers i.e., if
is a root, then
is also a root.
If the roots of the polynomial
are
, then it can be factorized as
.
Here, we are to find a factorization of
. Also, given that
and
are roots of the polynomial.
Since
is a polynomial with real coefficients, so each complex root exists in a pair of conjugates.
Hence,
and
are also roots of the given polynomial.
Thus, all the four roots of the polynomial
, are:
.
So, the polynomial
can be factorized as follows:
![\{x-(-2+i\sqrt{7})\}\{x-(-2-i\sqrt{7})\}\{x-(1-i\sqrt{3})\}\{x-(1+i\sqrt{3})\}\\=(x+2-i\sqrt{7})(x+2+i\sqrt{7})(x-1+i\sqrt{3})(x-1-i\sqrt{3})\\=\{(x+2)^2+7\}\{(x-1)^2+3\}\hspace{1cm} [\because (a+b)(a-b)=a^2-b^2]\\=(x^2+4x+4+7)(x^2-2x+1+3)\\=(x^2+4x+11)(x^2-2x+4)](https://tex.z-dn.net/?f=%5C%7Bx-%28-2%2Bi%5Csqrt%7B7%7D%29%5C%7D%5C%7Bx-%28-2-i%5Csqrt%7B7%7D%29%5C%7D%5C%7Bx-%281-i%5Csqrt%7B3%7D%29%5C%7D%5C%7Bx-%281%2Bi%5Csqrt%7B3%7D%29%5C%7D%5C%5C%3D%28x%2B2-i%5Csqrt%7B7%7D%29%28x%2B2%2Bi%5Csqrt%7B7%7D%29%28x-1%2Bi%5Csqrt%7B3%7D%29%28x-1-i%5Csqrt%7B3%7D%29%5C%5C%3D%5C%7B%28x%2B2%29%5E2%2B7%5C%7D%5C%7B%28x-1%29%5E2%2B3%5C%7D%5Chspace%7B1cm%7D%20%5B%5Cbecause%20%28a%2Bb%29%28a-b%29%3Da%5E2-b%5E2%5D%5C%5C%3D%28x%5E2%2B4x%2B4%2B7%29%28x%5E2-2x%2B1%2B3%29%5C%5C%3D%28x%5E2%2B4x%2B11%29%28x%5E2-2x%2B4%29)
Therefore, a factorization of
is
.
To know more about factorization, refer: brainly.com/question/25829061
#SPJ9
We have these opposite pairs
- 9.2 and -9.2
- 2.9 and -2.9
- 1.4 and -1.4
- 4.1 and -4.1
So all we're doing is matching each positive number with its negative version. In terms of a visual, the opposite of a number is mirrored over 0 on the number line. So for instance, the opposite of 2 is -2, with each being two units away from 0 on the number line.
Answer:
y=-3/4x-8
Step-by-step explanation:
Answer:
y= 3/2x- 4
Step-by-step explanation:
3/2 = mx
b= -4
y=mx+b
Answer:
The area of the shaded portion of the figure is
Step-by-step explanation:
see the attached figure to better understand the problem
we know that
The shaded area is equal to the area of the square less the area not shaded.
There are 4 "not shaded" regions.
step 1
Find the area of square ABCD
The area of square is equal to

where
b is the length side of the square
we have

substitute

step 2
We can find the area of 2 "not shaded" regions by calculating the area of the square less two semi-circles (one circle):
The area of circle is equal to

The diameter of the circle is equal to the length side of the square
so
---> radius is half the diameter
substitute


Therefore, the area of 2 "not-shaded" regions is:

and the area of 4 "not-shaded" regions is:

step 3
Find the area of the shaded region
Remember that the area of the shaded region is the area of the square less 4 "not shaded" regions:
so
---> exact value
assume

substitute