Answer:
2.52
Step-by-step explanation:
5x + 15.5 = 28.1
subtract 15.5 from both sides
5x = 12.6
divide both sides by 5
x = 2.52
Answer:
The mean number of adults who would have bank savings accounts is 32.
Step-by-step explanation:
For each adult surveyed, there are only two possible outcomes. Either they have bank savings accounts, or they do not. So we use the binomial probability distribution to solve this problem.
Binomial probability distribution
Probability of exactly x sucesses on n repeated trials, with p probability.
The expected value of the binomial distribution is:

In this problem, we have that:

If we were to survey 50 randomly selected adults, find the mean number of adults who would have bank savings accounts.
This is E(X) when
.
So

The mean number of adults who would have bank savings accounts is 32.
Answer:
(-138) is the answer.
Step-by-step explanation:
Perfect square numbers between 15 and 25 inclusive are 16 and 25.
Sum of perfect square numbers 16 and 25 = 16 + 25 = 41
Sum of the remaining numbers between 15 and 25 inclusive means sum of the numbers from 17 to 24 plus 15.
Since sum of an arithmetic progression is defined by the expression
![S_{n}=\frac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_%7Bn%7D%3D%5Cfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
Where n = number of terms
a = first term of the sequence
d = common difference
![S_{8}=\frac{8}{2} [2\times 17+(8-1)\times 1]](https://tex.z-dn.net/?f=S_%7B8%7D%3D%5Cfrac%7B8%7D%7B2%7D%20%5B2%5Ctimes%2017%2B%288-1%29%5Ctimes%201%5D)
= 4(34 + 7)
= 164
Sum of 15 +
= 15 + 164 = 179
Now the difference between 41 and sum of perfect squares between 15 and 25 inclusive = 
= -138
Therefore, answer is (-138).
512 root 3 equals 886.810
Answer:
3/2 times as far
Step-by-step explanation:
Mai's distance divided by Noah's distance will give you your answer.
6.75 divided by 4.5 is 1.5 which is 3/2 as a decimal.