Given two numbers x and y such that:
x + y = 12 ... (1)
<span>two numbers will maximize the product g</span>
from equation (1)
y = 12 - x
Using this value of y, we represent xy as
xy = f(x)= x(12 - x)
f(x) = 12x - x^2
Differentiating the above function:
f'(x) = 12 - 2x
Maximum value of f(x) occurs at point for which f'(x) = 0.
Equating f'(x) to 0 we get:
12 - 2x = 0
2x = 12
> x = 12/2 = 6
Substituting this value of x in equation (2):
y = 12 - 6 = 6
Therefore, value of xy is maximum when:
x = 6 and y = 6
The maximum value of xy = 6*6 = 36
2x+3y=6
3y=6-2x
y=2-2/3x
y=-2/3x+2
the 3rd one is correct
Answer:
7*(2a-1)
Step-by-step explanation:
Answer: (m-3)(5m-2)
Step-by-step explanation:
5m^2-17m+6 factored is (m-3)(5m-2).
The vertex form of the function is y = (x + 8)² - 71
The vertex is (-8 , -71)
Step-by-step explanation:
The vertex form of the quadratic equation y = ax² + bx + c is
y = a(x - h)² + k, where
- (h , k) are the coordinates of the vertex point
- a, b, c are constant where a is the leading coefficient of the function (coefficient of x²) , b is the coefficient of x and c is the y-intercept
- k is the value of y when x = h
∵ y = x² + 16x - 7
∵ y = ax² + bx + c
∴ a = 1 , b = 16 , c = -7
∵
∴
∴ h = -8
To find k substitute y by k and x by -8 in the equation above
∵ k is the value of y when x = h
∵ h = -8
∴ k = (-8)² + 16(-8) - 7 = -71
∵ The vertex form of the quadratic equation is y = a(x - h)² + k
∵ a = 1 , h = -8 , k = -71
∴ y = (1)(x - (-8))² + (-71)
∴ y = (x + 8)² - 71
∵ (h , k) are the coordinates of the vertex point
∵ h = -8 and k = -71
∴ The vertex is (-8 , -71)
The vertex form of the function is y = (x + 8)² - 71
The vertex is (-8 , -71)
Learn more:
You can learn more about quadratic equation in brainly.com/question/9390381
#LearnwithBrainly