Answer:
Part a) 119 cups
Part b) 30 cups
Step-by-step explanation:
Part a)
step 1
Find the volume of the conical cup with a diameter of 4 in. and a height of 8 in
The volume of the cone (cup) is equal to

we have
----> the radius is half the diameter

assume

substitute

step 2
Find out how many cups of water must Carissa scoop out of the sink
Divide the volume of the sink by the volume of the cup
so

Part b)
step 1
Find the volume of the conical cup with a diameter of 8 in. and a height of 8 in
The volume of the cone (cup) is equal to

we have
----> the radius is half the diameter

assume

substitute

step 2
Find out how many cups of water must Carissa scoop out of the sink
Divide the volume of the sink by the volume of the cup
so

E and F are two events and that P(E)=0.3 and P(F|E)=0.5. Thus, P(E and F)=0.15
Bayes' theorem is transforming preceding probabilities into succeeding probabilities. It is based on the principle of conditional probability. Conditional probability is the possibility that an event will occur because it is dependent on another event.
P(F|E)=P(E and F)÷P(E)
It is given that P(E)=0.3,P(F|E)=0.5
Using Bayes' formula,
P(F|E)=P(E and F)÷P(E)
Rearranging the formula,
⇒P(E and F)=P(F|E)×P(E)
Substituting the given values in the formula, we get
⇒P(E and F)=0.5×0.3
⇒P(E and F)=0.15
∴The correct answer is 0.15.
If, E and F are two events and that P(E)=0.3 and P(F|E)=0.5. Thus, P(E and F)=0.15.
Learn more about Bayes' theorem on
brainly.com/question/17010130
#SPJ1
6 positive tiles because there’s 6 negative so 6 positive will cancel it out
Answer:
m = 44
Step-by-step explanation:
USe the pythagoream thyroem a^2 + b^2 = m^2. so 10^2 + m = 12^2
or 100 + m = 144. subtract 100 from both sides, you get m = 44
Answer:
(
, 8 )
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = 10x - 2 ← is in slope- intercept form
with slope m = 10
Parallel lines have equal slopes
then the tangent to the parabola with a slope of 10 is required.
the slope of the tangent at any point on the parabola is 
differentiate each term using the power rule
(a
) = na
, then
= 6x + 2
equating this to 10 gives
6x + 2 = 10 ( subtract 2 from both sides )
6x = 8 ( divide both sides by 6 )
x =
= 
substitute this value into the equation of the parabola for corresponding y- coordinate.
y = 3(
)² + 2
= (3 ×
) + 2
=
+ 
= 
= 8
the point on the parabola with tangent parallel to y = 10x - 2 is (
, 8 )