1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kirza4 [7]
3 years ago
13

What's the symbol for an ionized gallium atom?

Physics
1 answer:
Talja [164]3 years ago
6 0
The symbol for gallium is Ga, so when gallium becomes an ionized atom it's symbol then changes to Ga+3
You might be interested in
A family car has a mass of 1400 kg. In an accident it hits a wall and goes from a speed of 27 m/s to a standstill in 1.5 seconds
horrorfan [7]

Answer:

The force has been reduced by 8018 N

Explanation:

The impulse exerted on the car during the crash is equal to the product of the force exerted and the duration of the collision, and it is also equal to the change in momentum of the car. So we can write:

F\Delta t = m\Delta v

where:

F is the force exerted on the car

\Delta t is the duration of the collision

m = 1400 kg is the mass of the car

\Delta  v=-27 m/s is the change in velocity of the car

We can re-write the equation as

F=\frac{m\Delta v}{\Delta t}

In the 1st collision, the time is 1.5 seconds, so the force is

F_1=\frac{(1400)(-27)}{1.5}=-25,200 N

In the 2nd collision, the time is increased to 2.2 seconds, so the force is

F_2=\frac{(1400)(-27)}{2.2}=-17,182 N

Therefore, the force has been reduced by:

F_2-F_1=-17,182-(-25,200)=8018 N

4 0
3 years ago
Read 2 more answers
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
2 years ago
What scientisists stated that animals, as well as plants, are made of cells.?
Andrews [41]
<span>The answer is Mathias Schleiden and <span><span>Theodor Schwann</span></span></span>
7 0
3 years ago
Will give correct answer brainliest<br><br>5 kg m/s<br>8kg m/s<br>80 kg m/s<br>200 kg m/s​
o-na [289]

Answer: Here this will help you..

Explanation:

1 kg-m/s to kilogram-force meter/second = 1 kilogram-force meter/second

5 kg-m/s to kilogram-force meter/second = 5 kilogram-force meter/second

10 kg-m/s to kilogram-force meter/second = 10 kilogram-force meter/second

20 kg-m/s to kilogram-force meter/second = 20 kilogram-force meter/second

30 kg-m/s to kilogram-force meter/second = 30 kilogram-force meter/second

40 kg-m/s to kilogram-force meter/second = 40 kilogram-force meter/second

50 kg-m/s to kilogram-force meter/second = 50 kilogram-force meter/second

75 kg-m/s to kilogram-force meter/second = 75 kilogram-force meter/second

100 kg-m/s to kilogram-force meter/second = 100 kilogram-force meter/second

8 0
2 years ago
Work done depends on
natima [27]

Answer:

C. Both force and displacement

Explanation:

Hope this helps

3 0
2 years ago
Other questions:
  • A 0.50-mm-diameter hole is illuminated by light of wavelength 500 nm. What is the width of the central maximum on a screen 2.0 m
    14·1 answer
  • How long does it take for an obituary to appear?
    5·2 answers
  • BRAINLIEST FOR THE FIRST TO ANSWER
    7·1 answer
  • What is the mass, in grams, of 2.90×10−3 mol of ammonium phosphate?
    14·2 answers
  • All BUT one is a function of the cell wall. That is___
    13·1 answer
  • Friction occurs when microscopic hills and valleys stick together<br><br> true or false
    12·2 answers
  • PLEASE HELP
    14·2 answers
  • Hey! please help i’ll give brainliest!
    12·1 answer
  • Roughly how many stars are in the Milky Way Galaxy?
    15·2 answers
  • List 3 different things you can read off a motion graph.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!