Answer:
Time period, 
Explanation:
Given that,
The quartz crystal used in an electric watch vibrates with a frequency of 32,768 Hz, f = 32768 Hz
We need to find the period of the crystal's motion. The relationship between the frequency and the time period is given by :

T is the time period of the crystal's motion.
Time period is given by :

So, the time period of the crystal's motion is
. Hence, this is the required solution.
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
The path the bowling ball would most closely follow after leaving the airplane is horizontal direction.
<h3>
Path of the bowling ball</h3>
Based on the law of inertia, which is the reluctance of an object to stop moving once in motion or start moving when it is at rest.
The bowling ball will maintain the path of the airline in the first few seconds of fall, after which it will change its path to vertical direction.
Thus, the path the bowling ball would most closely follow after leaving the airplane is horizontal direction.
Learn more about horizontal direction here: brainly.com/question/2534565
#SPJ1
Answer:
θ = 20.9 rad
Explanation:
In a blender after a short period of acceleration the blade is kept at a constant angular velocity, for which we can use the relationship
w = θ / t
θ = w t
if we know the value of the angular velocity we can find the angular position, we must remember that all the angles must be in radians
suppose that the angular velocity is w = 10 rpm, let us reduce to the SI system
w = 10 rpm 
= 1,047 rads
let's calculate
θ = 1,047 20
θ = 20.9 rad
Answer:
The angle of separation is
Explanation:
From the question we are told that
The angle of incidence is 
The refractive index of violet light in diamond is 
The refractive index of red light in diamond is 
The wavelength of violet light is
The wavelength of red light is
Snell's Law can be represented mathematically as

Where
is the angle of refraction
=> 
Now considering violet light

substituting values




Now considering red light

substituting values




The angle of separation between the red light and the violet light is mathematically evaluated as

substituting values

