This question s incomplete, the complete question is;
The Watson family and the Thompson family each used their sprinklers last summer. The Watson family's sprinkler was used for 15 hours. The Thompson family's sprinkler was used for 30 hours.
There was a combined total output of 1050 of water. What was the water output rate for each sprinkler if the sum of the two rates was 55L per hour
Answer:
The Watson family sprinkler is 40 L/hr while Thompson family sprinkler is 15 L/hr
Step-by-step explanation:
Given the data in the question;
let water p rate for Watson family and the Thompson family sprinklers be represented by x and y respectively
so
x + y = 55 ----------------equ1
x = 55 - y ------------------qu2
also
15x + 30y = 1050
x + 2y = 70 --------------equ3
input equ2 into equ3
(55 - y) + 2y = 70
- y + 2y = 70 - 55
y = 15
input value of y into equ1
x + 15 = 55
x = 55 - 15
x = 40
Therefore, The Watson family sprinkler is 40 L/hr while Thompson family sprinkler is 15 L/hr
4x+3=4x+3, feet=fe^2t, 3x−2=3x−2, feet=fe^2t
Step-by-step explanation:
OK. I did it. Now let's see if I can go through it without
getting too complicated.
I think the key to the whole thing is this fact:
A radius drawn perpendicular to a chord bisects the chord.
That tells us several things:
-- OM bisects AB.
'M' is the midpoint of AB.
AM is half of AB.
-- ON bisects AC.
'N' is the midpoint of AC.
AN is half of AC.
-- Since AC is half of AB,
AN is half of AM.
a = b/2
Now look at the right triangle inside the rectangle.
'r' is the hypotenuse, so
a² + b² = r²
But a = b/2, so (b/2)² + b² = r²
(b/2)² = b²/4 b²/4 + b² = r²
Multiply each side by 4: b² + 4b² = 4r²
- - - - - - - - - - -
0 + 5b² = 4r²
Repeat the
original equation: a² + b² = r²
Subtract the last
two equations: -a² + 4b² = 3r²
Add a² to each side: 4b² = a² + 3r² . <=== ! ! !
Answer:
180'000'000/30 = 6'000'000 ft³
Step-by-step explanation:
Answer:
means the inverse function
=
Step-by-step explanation:
means the inverse function
to find an inverse function, flip the x and y variables and solve for y
f(x) = 5x^3 - 6
y = 5x^3 - 6
x = 5y^3 - 6
x + 6 = 5y^3
(x + 6)/5 = y^3
= y