Answer:
vHe / vNe = 2.24
Explanation:
To obtain the velocity of an ideal gas you must use the formula:
v = √3RT / √M
Where R is gas constant (8.314 kgm²/s²molK); T is temperature and M is molar mass of the gas (4x10⁻³kg/mol for helium and 20,18x10⁻³ kg/mol for neon). Thus:
vHe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol
vNe = √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
The ratio is:
vHe / vNe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol / √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
vHe / vNe = √20.18x10⁻³kg/mol / √4x10⁻³kg/mol
<em>vHe / vNe = 2.24</em>
<em />
I hope it helps!
The answer is: <span>The principal idea here is how r they obtained:
for example: sodium u put equal molar concentrations of sodium (Na) and sodium ion (Na+) together in a beaker , then dip in this solution a platinium wire (zero potential) which is connected to a normal hydrogen electrode (electrode with zero potential) then u see the reading of the whole circuit
if it is negtive, this means negative potential which means that the reducing property predominates where Na(reducing agent) is oxidized and electrons r accumulated on the platinum which gives it negative charge
This means that (Na) is a reducing agent, its strength depends on the value of the potential obtained, and here the table can help you
If u want to know if it's strong red. agent, look for it in the table, see if it has higher reduction potentail (or lower oxidation potential, same idea) than most other substances then it is reducing agent
and vice versa
So if we look at ur examples, u will find that MnO4- is the very strong oxidizing agent (has highest oxidation potential) (lowest reduction potential)
H+ and H2 are both with zero potential, no redox properties
And lastly Na and Na+:
This u can know from ur knowledge in chemistry, that sodium is very rarely found in elemental form and always in the form of ion so u can deduce that Na is the very strong reducing agent
or u can see the value of its standard oxi or red potetial and deduce which is the predominating form of them.
I hope this helps</span>
Answer:
This looks like a hard question for me is this biology
Explanation:
Answer:
0.47dm³
Explanation
Given parameters :
Molarity of NaCl = 6.67M
Number of moles = 3.12mol
Volume of NaCl =?
Volume of NaCl = number of moles/Molarity
Volume of NaCl = 3.12mol/6.67M
Volume of NaCl = 0.47dm³