Answer:
14
Step-by-step explanation:
f(x)=3x²+1
f(2) = 3 x 2² + 1 = 13
g(x) =1-x
g(2) = 1 - 2 = -1
(f-g)(2) f(2) - g(2) = 13 - (-1) = 14
Answer:
C and D
Step-by-step explanation:
We can see that the base of the bigger triangle is 6. Based on the straight sides adjacent to the hypotenuse, the bigger one's height is 6 and the smaller one's is 3. This means that the smaller one is half the size of the bigger one. This means that if the bigger base is 6, the smaller one is 3. Since it is 3, we move 3 spaces left from point Z to get point Y. If you moved 3 spaces left, it would be (-5,2). You can also move 3 spaces right and then your Y point would be at (1,2) so C and D are the 2 possible answers.
Answer:
4÷7 is 0.571428571428571
= 0.57
Step-by-step explanation:
Hope this helps!!!
To solve this problem, you have to know these two special factorizations:

Knowing these tells us that if we want to rationalize the numerator. we want to use the top equation to our advantage. Let:
![\sqrt[3]{x+h}=x\\ \sqrt[3]{x}=y](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%2Bh%7D%3Dx%5C%5C%20%5Csqrt%5B3%5D%7Bx%7D%3Dy%20)
That tells us that we have:

So, since we have one part of the special factorization, we need to multiply the top and the bottom by the other part, so:

So, we have:
![\frac{x+h-h}{h(\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2})}=\\ \frac{x}{\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%2Bh-h%7D%7Bh%28%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%29%7D%3D%5C%5C%20%5Cfrac%7Bx%7D%7B%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%7D%20)
That is our rational expression with a rationalized numerator.
Also, you could just mutiply by:
![\frac{1}{\sqrt[3]{x_h}-\sqrt[3]{x}} \text{ to get}\\ \frac{1}{h\sqrt[3]{x+h}-h\sqrt[3]{h}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7Bx_h%7D-%5Csqrt%5B3%5D%7Bx%7D%7D%20%5Ctext%7B%20to%20get%7D%5C%5C%20%5Cfrac%7B1%7D%7Bh%5Csqrt%5B3%5D%7Bx%2Bh%7D-h%5Csqrt%5B3%5D%7Bh%7D%7D%20)
Either way, our expression is rationalized.