To solve this problem, you have to know these two special factorizations:
![x^3-y^3=(x-y)(x^2+xy+y^2)\\ x^3+y^3=(x+y)(x^2-xy+y^2)](https://tex.z-dn.net/?f=%20x%5E3-y%5E3%3D%28x-y%29%28x%5E2%2Bxy%2By%5E2%29%5C%5C%20x%5E3%2By%5E3%3D%28x%2By%29%28x%5E2-xy%2By%5E2%29%20)
Knowing these tells us that if we want to rationalize the numerator. we want to use the top equation to our advantage. Let:
![\sqrt[3]{x+h}=x\\ \sqrt[3]{x}=y](https://tex.z-dn.net/?f=%20%5Csqrt%5B3%5D%7Bx%2Bh%7D%3Dx%5C%5C%20%5Csqrt%5B3%5D%7Bx%7D%3Dy%20)
That tells us that we have:
![\frac{x-y}{h}](https://tex.z-dn.net/?f=%20%20%5Cfrac%7Bx-y%7D%7Bh%7D)
So, since we have one part of the special factorization, we need to multiply the top and the bottom by the other part, so:
![\frac{x-y}{h}*\frac{x^2+xy+y^2}{x^2+xy+y^2}=\frac{x^3-y^3}{h*(x^2+xy+y^2)}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx-y%7D%7Bh%7D%2A%5Cfrac%7Bx%5E2%2Bxy%2By%5E2%7D%7Bx%5E2%2Bxy%2By%5E2%7D%3D%5Cfrac%7Bx%5E3-y%5E3%7D%7Bh%2A%28x%5E2%2Bxy%2By%5E2%29%7D%20)
So, we have:
![\frac{x+h-h}{h(\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2})}=\\ \frac{x}{\sqrt[3]{(x+h)^2}+\sqrt[3]{(x+h)(x)}+\sqrt[3]{x^2}}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bx%2Bh-h%7D%7Bh%28%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%29%7D%3D%5C%5C%20%5Cfrac%7Bx%7D%7B%5Csqrt%5B3%5D%7B%28x%2Bh%29%5E2%7D%2B%5Csqrt%5B3%5D%7B%28x%2Bh%29%28x%29%7D%2B%5Csqrt%5B3%5D%7Bx%5E2%7D%7D%20)
That is our rational expression with a rationalized numerator.
Also, you could just mutiply by:
![\frac{1}{\sqrt[3]{x_h}-\sqrt[3]{x}} \text{ to get}\\ \frac{1}{h\sqrt[3]{x+h}-h\sqrt[3]{h}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5Csqrt%5B3%5D%7Bx_h%7D-%5Csqrt%5B3%5D%7Bx%7D%7D%20%5Ctext%7B%20to%20get%7D%5C%5C%20%5Cfrac%7B1%7D%7Bh%5Csqrt%5B3%5D%7Bx%2Bh%7D-h%5Csqrt%5B3%5D%7Bh%7D%7D%20)
Either way, our expression is rationalized.