1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tiny-mole [99]
3 years ago
13

You are assigned 32 math exercises for homework. You complete 87.5% of these before dinner. How many do you have left to do afte

r dinner?

Mathematics
2 answers:
Alja [10]3 years ago
8 0
I think it would be 4
masya89 [10]3 years ago
4 0
28.02 is the answer to the question
You might be interested in
Calculus 2. Please help
Anarel [89]

Answer:

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}}} \, dx = \infty

General Formulas and Concepts:

<u>Algebra I</u>

  • Exponential Rule [Rewrite]:                                                                           \displaystyle b^{-m} = \frac{1}{b^m}

<u>Calculus</u>

Limits

  • Right-Side Limit:                                                                                             \displaystyle  \lim_{x \to c^+} f(x)

Limit Rule [Variable Direct Substitution]:                                                             \displaystyle \lim_{x \to c} x = c

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integrals

  • Definite Integrals

Integration Constant C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

U-Solve

Improper Integrals

Exponential Integral Function:                                                                              \displaystyle \int {\frac{e^x}{x}} \, dx = Ei(x) + C

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integral] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \int\limits^1_0 {\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Rewrite [Improper Integral]:                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \int\limits^1_a {\frac{e^{-x^2}}{x} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set:                                                                                                                 \displaystyle u = -x^2
  2. Differentiate [Basic Power Rule]:                                                                 \displaystyle \frac{du}{dx} = -2x
  3. [Derivative] Rewrite:                                                                                     \displaystyle du = -2x \ dx

<em>Rewrite u-substitution to format u-solve.</em>

  1. Rewrite <em>du</em>:                                                                                                     \displaystyle dx = \frac{-1}{2x} \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {-\frac{e^{-x^2}}{x} \, dx
  2. [Integral] Substitute in variables:                                                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} -\int\limits^1_a {\frac{e^{u}}{-2u} \, du
  3. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}\int\limits^1_a {\frac{e^{u}}{u} \, du
  4. [Integral] Substitute [Exponential Integral Function]:                                 \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(u)] \bigg| \limits^1_a
  5. Back-Substitute:                                                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-x^2)] \bigg| \limits^1_a
  6. Evaluate [Integration Rule - FTC 1]:                                                             \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{1}{2}[Ei(-1) - Ei(a)]
  7. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \lim_{a \to 0^+} \frac{Ei(-1) - Ei(a)}{2}
  8. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx = \infty

∴  \displaystyle \int\limits^1_0 {\frac{1}{xe^{x^2}} \, dx  diverges.

Topic: Multivariable Calculus

7 0
3 years ago
S: 4(6x−18)
Sedaia [141]

Answer:

Part A: S= 24x-72

Part B: S and T are not equivalent for any values of x since when both equations are set equal to 0 they equal different answers. T=.75, while S=3

Step-by-step explanation:

To distribute first you multiply 4 by 6x which equals 24, then you multiply 4 by -18 which gives you -72. Then you the equation together.

5 0
3 years ago
12 balls numbered 1 through 12 are placed in a bin. In how many ways can 3 balls be drawn, in order, from the bin, if each ball
Iteru [2.4K]

Answer:

1320

Step-by-step explanation:

There are three "spots" for balls.

__ __ __

For the first "spot," and without replacement, meaning we don't put the balls back, there are 12 choices.

12 __ __

But for the next spot, there are only 11 choices. And for the next, there are only 10!

12 11 10

Since these are independent events, we multiply them together.

12 x 11 x 10 = 1320

There are 1320 possibilities!

How could we do it on the calculator, much faster? The question says "in order," so we know it's a <em>permutation,</em> not a <em>combination.</em> This is the nPr button on the calculator (math -> prb -> 2). Just type in 12 nPr 3 and you get the same answer, 1320.

3 0
3 years ago
Value of [(256)1/2]1/2 please help
velikii [3]

(256 x 1/2) x 1/2 (reduce the numbers

128 x 1/2

solution is 64

8 0
3 years ago
2+3=8,<br> 3+7=27,<br> 4+5=32,<br> 5+8=60,<br> 6+7=72,<br> 7+8=??<br><br> Solve it
alisha [4.7K]

Answer:

98

2+3=2*[3+(2-1)]=8

3+7=3*[7+(3-1)]=27

4+5=4*[5+(4-1)]=32

5+8=5*[8+(5-1)]=60

6+7=6*[7+(6-1)]=72

therefore

7+8=7*[8+(7-1)]=98

x+y=x[y+(x-1)]=x^2+xy-x

7 0
3 years ago
Read 2 more answers
Other questions:
  • How to add a + b using 45a +90b
    5·1 answer
  • Is pi/pi irrational
    6·1 answer
  • Hi i need help on segment relationships in circles
    9·1 answer
  • Students arrive randomly at the help desk of the computer lab. There is only one service agent, and the time required for inquir
    5·1 answer
  • Multiply the polynomials. (5x2 + 2x + 8)(7x – 6) A. 35x3 – 16x2 – 44x – 48 B. 35x3 – 14x2 + 44x – 48 C. 35x3 – 16x2 + 44x + 48 D
    10·1 answer
  • If there is 6 pictures in a bag what is the probability if she pulled out of the bag a total if 20 times
    14·1 answer
  • Separate the number 51 into two parts so that the second part is 3 more than twice as large as the first part.
    9·1 answer
  • Subtract (2xy-2y) from the sum of (10x-2y) and (-3y)<br><br> -8x-3y<br> -8x+3y<br> 8x-3y<br> 8x+3y
    5·1 answer
  • What is the perimeter of a triangle with sides the following lengths: 3a + 2c,5c + 9 and 5a - 6. Simplify the expression.
    8·1 answer
  • What is the value of (1/4) 2
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!