1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
11

T with a remainder of zero. Which of the following statements must be true?

Mathematics
2 answers:
romanna [79]3 years ago
8 0

Answer:

it D.1/2 must be a root of the polynomial 2x²+9x-5

Step-by-step explanation:

apexs

klemol [59]3 years ago
4 0
(x + 3) is a factor so x = -3 must be a root.
You might be interested in
My mom died can u help me
nata0808 [166]

Answer: 5 minutes

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
What does |-71 equal?
erastovalidia [21]

Answer:

71 (or 7.... read explanation)

Step-by-step explanation:

If you mean | -71 | then it's 71.

If you mean | -7 | then it's 7

Absolute values turn negative numbers into positive numbers.

5 0
2 years ago
Read 2 more answers
Determine the Sin for K and P<br> Determine el pecado para Ky P<br> Tanluso<br> 14/<br> 48<br> 48
joja [24]

Step-by-step explanation:

sin∅ = opposite / hypotenuse

Answer:

sin(K) = 48/50

sin(P) = 14/50

4 0
3 years ago
Write and equation for the shift of the parent graph y=1/x
SashulF [63]
You can think of this equation as \bf f(x)=\cfrac{1}{x}\implies f(x)=(x)^{-1}

and thus apply the transformations to it as such

\bf \qquad \qquad \qquad \qquad \textit{function transformations}&#10;\\ \quad \\\\&#10;% left side templates&#10;\begin{array}{llll}&#10;f(x)=&{{  A}}({{  B}}x+{{  C}})+{{  D}}&#10;\\ \quad \\&#10;y=&{{  A}}({{  B}}x+{{  C}})+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}}\sqrt{{{  B}}x+{{  C}}}+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}}(\mathbb{R})^{{{  B}}x+{{  C}}}+{{  D}}&#10;\\ \quad \\&#10;f(x)=&{{  A}} sin\left({{ B }}x+{{  C}}  \right)+{{  D}}&#10;\end{array}\\\\&#10;--------------------\\\\

\bf \bullet \textit{ stretches or shrinks horizontally by  } {{  A}}\cdot {{  B}}\\\\&#10;\bullet \textit{ flips it upside-down if }{{  A}}\textit{ is negative}&#10;\\\\&#10;\bullet \textit{ horizontal shift by }\frac{{{  C}}}{{{  B}}}\\&#10;\left. \qquad  \right. if\ \frac{{{  C}}}{{{  B}}}\textit{ is negative, to the right}\\\\&#10;\left. \qquad  \right.  if\ \frac{{{  C}}}{{{  B}}}\textit{ is positive, to the left}\\\\

\bf \bullet \textit{ vertical shift by }{{  D}}\\&#10;\left. \qquad  \right. if\ {{  D}}\textit{ is negative, downwards}\\\\&#10;\left. \qquad  \right. if\ {{  D}}\textit{ is positive, upwards}\\\\&#10;\bullet \textit{ period of }\frac{2\pi }{{{  B}}}

1)  D = 2, C = +3

2) D = -12, C = -2

3) C = +6, D = 3

4) C = -7, D = -7
7 0
3 years ago
Show all work below to answer the following for a certain city that had a population of 150,000 in the year 2010. In 2020, the p
Gelneren [198K]

The constant rate of continuous growth, k, for this population is equal to 2.11935%. And the population  will reach 250,000 people in 24.36 years.

For solving this question, you should apply the Population Growth Equation.

<h3>Population Growth Equation</h3>

The formula for the Population Growth Equation is:

      P_f=P_o*(1+\frac{R}{100} )^t        

Pf= future population

Po=initial population

r=growth rate

t= time (years)

STEP 1 - Find the constant rate of continuous growth, k, for this population.

For this exercise, you have:

Pf= future population= 185,000 in 2020.

Po=initial population =150,000 in 2010.

r=growth rate= ?

t= time (years)=2020-2010=10

Then,

P_f=P_o*(1+\frac{R}{100} )^t\\ \\ 185000=150000\cdot \left(1+\frac{R}{100}\:\right)^{10}\\ \\ \left(1+\frac{R}{100}\right)^{10}=\frac{185000}{150000} \\ \\ \left(1+\frac{R}{100}\right)^{10}=\frac{37}{30}\\ \\ R=100\sqrt[10]{\frac{37}{30}}-100=2.11935\%

STEP 2 - Find the <em>t</em>  for population 250,000 people.

P_f=P_o*(1+\frac{R}{100} )^t\\ \\ 250000=150000\cdot \left(1+\frac{2.11935}{100}\:\right)^{10}\\ \\ \left(1+\frac{2.11935}{100}\right)^{10}=\frac{250000}{150000} \\ \\ \left(1+\frac{2.11935}{100}\right)^t=\frac{5}{3}\\ \\ t\ln \left(1+\frac{2.11935}{100}\right)=\ln \left(\frac{5}{3}\right)\\ \\ t=\frac{\ln \left(\frac{5}{3}\right)}{\ln \left(\frac{102.11935}{100}\right)}\\ \\ t=24.36

Read more about the population growth equation here:

brainly.com/question/25630111

7 0
2 years ago
Other questions:
  • PQ= 2x +1 and QR= 5x - 44; find PQ
    13·2 answers
  • Help with math question plz. 12th grade
    8·1 answer
  • What is 5/12 times 1 1/3
    6·1 answer
  • Simplify this expression 3x +2a +5x +4a
    7·1 answer
  • Please answer as soon as possible
    7·2 answers
  • Write the number 0.00003852 in standard form
    7·1 answer
  • If an elephant could eat 2,500 pounds of food in 10 days how much can it eat in 1,000 days
    12·1 answer
  • Please help me with number 40 specifically
    5·1 answer
  • Very very very URGENTTT!!!
    13·1 answer
  • Solve the inequity for x and identify the graph of its solution.|x+2|&lt;2
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!