Answer:
epidermal! hope this helps u!
The reaction mixture of problem 1 includes <span>10mL of 4.0 M acetone = 10 mL 1.0 M HCl = 10 mL 0.0050 M I2 = 20 mL H2O. if this is true then the procedure is the following:
In order to find the total volume of reaction then you need to do like this:
</span><span>V = 10 mL + 10 mL + 10 mL + 20 mL = 50 mL </span>
<span>[I2]o = (0.005 mol I2 / 1 L I2 solution) (10 mL I2 solution) / 50 mL = 0.001 M </span>
<span>To first order, the reaction rate is 0.001 M / 230 s = 4,3 e-6 M/s
Then if you want to find the rate yoe need to use the following formula:
</span><span> k [CO(CH3)2]^a [I2]^b [HCl]^c
</span>So: <span>4,3 e-6 = k (4 M * 10 mL / 50 mL)^a (1e-3 M)^b (1 M * 10 mL / 50 mL)^c
</span>
Answer:
Electromagnetic Radiation
Activity: TV or Radio
Type: Infrared Waves
Description of use:A television (also known as a TV) is a machine with a screen. Televisions receive broadcasting signals and turn them into pictures and sound. The word "television" comes from the words tele (Greek for far away) and vision (sight). ... Computers and mobile devices also can be used for watching television programs.
Answer:
An alkyl halide can undergo SN2 reaction with an amine
Explanation:
The displacement of a bromine atom by an an amine (step 2---> 3) in the reaction sequence is an example of an SN2 reaction in which the amine is the nucleophile.
The nitrogen atom of the amine which bears a lone pair of electrons functions as the nucleophile and attacks the electrophilic carbon atom of the alkyl halide displacing the bromide and creating a new Carbon-Nitrogen bond. An ammonium intermediate is immediately formed and the reaction is completed by the abstraction of a hydrogen by a base (such as excess amine present in the system).
This reaction is slower with t-BuNH2 because of steric hindrance and steric crowding in the transition state. SN2 reactions are faster with methylamine where the alkyl carbon is easily accessible.
The detailed mechanism of this reaction has been attached to this answer.
The polarity (dipolar moments) of the bonds can be predicted from the difference of electronegativities of the atoms.
To predict the polarity of the entire molecule you have to take into account the geometry of the molecule and the final vector resulting from the addition of all the dipolar moments.
H-O bonds in H2O are highly polar and the molecule is also polar.
C - Cl bonds in CCl4 are highly polar, but the symmetry of the molecule is such the they cancel each other and the molecular is nonpolar.
Answer: CCl4