Answer:
Option B
Explanation:
Magnesium is an alkali earth metal and chlorine is a nonmetal. Due to this, and their differences in electronegativity, the elements form an ionic bond. Since magnesium has two valence electrons, it will give them up to two chlorine atoms (which has 7 valence electrons), which needs them to complete its octet. From this, magnesium forms a cation, and will have the ion formula Mg(2+). The two chlorine atoms form anions, and will have the ion formula Cl(1-).
Terms:
- Cation: a positively charged ion
- Anion: a negatively charge ion.
- Electronegativity: the tendency of an atom in a molecule to attract the shared pair of electrons towards itself.
Explanation:
The molecules of solids are shrinked in there normal state . but as a heat energy is produced , the molecules starts curating fast and fast as temperature goes up . since they vibrate , they hit and collide each other breaking the bondings this increases the surface of area of the solid , and molecules consumes that space and they expand .
Answer:
=C₄H₄O₂
Explanation:
Given the empirical formula of a molecule, the he the quotient of the molecular mas and and the empirical mass=constant.
84.0 g/mol/mass of(C₂H₂O)=constant
=84/(12×2+1×2×16)
=84/42
=2
Therefore, the molecular formula is (C₂H₂O)₂=C₄H₄O₂
Answer:
CH3COOH would be more concentrated
Explanation:
The higher the concentration value, the more concentrated it is.
The relationship between concentration, moles and volume is given by the equation;
Concentration = No of moles / Volume
5.0 grams of HCOOH dissolved in 189 mL of water
Number of moles = Mass / Molar mass = 5 / 46.03 = 0.1086 mol
Concentration = 0.1086 / 0.189 = 0.5746 mol/L
1.5 moles of CH3COOH dissolved in twice as much water
Volume = 2 * 189 = 378 ml = 0.378 L
Concentration = 1.5 / 0.378 = 3.9683 mol/L
Comparing both concentration values;
CH3COOH would be more concentrated
I believe that it most likely would be C,