There are 1000 mililiters in a liter, so 1000 ml for every liter, you have 5 liters, so:
5L*1000 = 5000 mL
Answer:
bonding molecular orbital is lower in energy
antibonding molecular orbital is higher in energy
Explanation:
Electrons in bonding molecular orbitals help to hold the positively charged nuclei together, and they are always lower in energy than the original atomic orbitals.
Electrons in antibonding molecular orbitals are primarily located outside the internuclear region, leading to increased repulsions between the positively charged nuclei. They are always higher in energy than the parent atomic orbitals.
Answer : The enthalpy of the given reaction will be, -1048.6 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
The main reaction is:

The intermediate balanced chemical reactions are:
(1)

(2)

(3)

(4)

(5)

Now reversing reaction 2, multiplying reaction 3 by 4, reversing reaction 1 and multiplying by 2, reversing reaction 5 and multiplying by 2 and then adding all the equations, we get :
(1)

(2)

(3)

(4)

(5)

The expression for enthalpy of main reaction will be:



Therefore, the enthalpy of the given reaction will be, -1048.6 kJ
1. The answer is option E, that is None of the above is correct.
As a polymer becomes more crystalline,
its melting point doesn't decreases, its density doesn't decreases, its stiffness doesn't decreases and its yield stress doesn't decreases.
2. The answer is option B, that is the molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.
In the smectic A liquid-crystalline phase, molecules are arranged in sheets, with their long axes parallel and their ends aligned as well.
3. For a substitutional alloy to form, the two metals combined must have similar atomic radii and chemical bonding properties.
500,000 g of baking soda is present in 1000 boxes of 500 g baking soda boxes.
Answer:
Option C.
Explanation:
As 500 g of baking soda is taken in each box of that company. The total weight of baking soda in all the boxes can be determined by adding the weights of each box. This is possible only when the number of boxes is less. But if the number of boxes are large, then we can determine the total weight of baking soda by multiplying the number of boxes with the weight in each box.
So in this case, 1000 boxes are present and in that 500 g of baking soda are present in each box.
So total grams of baking soda will be 1000 * 500 = 5,00,000 g.
Thus, 500,000 g of baking soda is present in 1000 boxes of 500 g baking soda boxes.