The given compound 3-chloro-2,2,5-trimethylhexane is an optically active compound .
Because this compound does not have plane of symmetry (POS) and center of symmetry (COS) i.e. does not have di-symmetry . And also forms non superimposable mirror image . the compound is optically active .
It has chiral center.
Here the chiral carbon has 4 distinct groups such as : chlorine , hydrogen , 2-methylpropyl , tertbutyl .
<h3>What is di-symmetry?</h3>
Di-symmetry is that which have no center of symmetry and plane of symmetry and alternate axis of symmetry .
<h3>Chiral center :</h3>
Have Sp3 hybridized center (4sigma bond ) .
4 distinct group is attached to the chiral atom. form non -superimposable mirror image .
<h3>What is optical isomerism ?</h3>
Same molecular formula and same structural formula . also have same physical and chemical properties .
They differ in their behavior towards plane polarized light (ppl) .
Learn more about chiral center here:
brainly.com/question/9522537
#SPJ4
Answer:
The Kc of this reaction is 311.97
Explanation:
Step 1: Data given
Kp = 0.174
Temperature = 243 °C
Step 2: The balanced equation
N2(g) + 3H2(g) ⇌ 2NH3(g)
Step 3: Calculate Kc
Kp = Kc *(RT)^Δn
⇒ with Kp = 0.174
⇒ with Kc = TO BE DETERMINED
⇒ with R = the gas constant = 0.08206 Latm/Kmol
⇒ with T = the temperature = 243 °C = 516 K
⇒ with Δn = number of moles products - moles reactants 2 – (1 + 3) = -2
0.174 = Kc (0.08206*516)^-2
Kc = 311.97
The Kc of this reaction is 311.97
<span>CO is the limiting reactant
( 25.0 x 3 = 75 moles of CO are required)
Moles Fe = 30.0 x 2 / 3 = 20.0
mass Fe = 20.0 x 55.847 g/mol=1117 g </span><span>
I'm just saying</span>
Answer:
BaBr2 (aq) + H2SO4 (aq) → BaSO4 (s) + 2 HBr (aq)
Explanation:
This is a precipitation reaction: BaSO4 is the formed precipitate.
Given :
Mass of oxygen containing carbon monoxide (CO) is 2.666 gram .
To Find :
How many grams of carbon (C) would be present in carbon monoxide (CO) that contains 2.666 grams of oxygen (O) .
Solution :
By law of constant composition , a given chemical compound always contains its component elements in fixed ratio (by mass) and does not depend on its source and method of preparation.
So , volume of solution does not matter .
Moles of oxygen ,
.
Now , molecule of CO contains 1 mole of C .
So , moles of C is also 0.167 mole .
Mass of carbon ,
.
Therefore , mass of carbon is 2 grams .
Hence , this is the required solution .