Answer:
The principal investment required to get a total amount of $ 1,000,000.00 from compound interest at a rate of 6% per year compounded 12 times per year over 45 years is $ 67,659.17.
Step-by-step explanation:
Given
- Accrued Amount A = $1000000
- Interest rate r = 6% = 0.06
- Compounded monthly n = 12
To determine:
Using the formula


substituting A = 1000000, r = 0.06, t = 45, and n = 12


$
Therefore, the principal investment required to get a total amount of $ 1,000,000.00 from compound interest at a rate of 6% per year compounded 12 times per year over 45 years is $ 67,659.17.
- 4 - 4 + 4 ÷ 4
- 4 ÷ 4 + 4 ÷ 4
- (4 + 4 + 4) ÷ 4
- √4 + √4 + 4 - 4
- √4 + 4 + 4 ÷ 4
- √4 + 4 + 4 - 4
- 4 + 4 - 4 ÷ 4
- 4 + 4 + 4 - 4
- 4 + 4 + 4 ÷ 4
- √4 + √4 + √4 + 4
- 44/(√4 + √4)
- √4 + √4 + 4 + 4
- 44/4 + 4
- 4 + 4 + 4 + √4
- 44/4 + 4
- 4 * 4 * 4 ÷ 4
- 4 * 4 + 4 ÷ 4
- 4 * 4 - √4 + 4
- 4! - 4 - 4 ÷ 4
- 4 * (4 + 4 ÷ 4)
- 4! - 4 + 4 ÷ 4
- 4 * 4 + 4 + √4
- 4! - √4 + 4/4
- 4 * (√4 + √4 + √4)
- 4! + √2 - 4 ÷ 4
- 4! + √4 + 4 - 4
- 4! + √4 + 4 ÷ 4
- 4! + 4 + 4 - 4
- 4! + 4 + 4 ÷ 4
- 4! + √4 + √4 + √4
Lol, that took a while, hope it helps!
Input is 4.
Process machine:
Input > - 7 > ÷ 3 > Output
Solve:
(Input) 4 - 7 = <u>-3</u>
<u>-3</u> ÷ 3 = <u>-1 </u>(Output)
Input = 4
Output = -1