Find the roots
solve
we use hmm, completing the suare
2(x²-1.5x)=4
divide both sides by 2
x²-1.5x=2
take 1/2 of linear coeiftn and square it
-1.5/2=-0.75, (-0.75)²=0.5625
add that to both sides
x²-1.5x+0.5625=2+0.5625
factor perfect squaer trinomial
(x-0.75)²=2.5625
square root both sides, remember to take positive and negative square roots
x-0.75=+/-√2.5625
add 0.75 to both sides
x=0.75+/-√2.5625
the roots are x=0.75+√2.5625 and x=0.75-√2.5625
1/a and 1/b
1/(0.75+√2.5625) and 1/(0.75-√2.5625)
if the roots of a quadratic equation are r1 and r2 then it factors to
(x-r1)(x-r2)
so then we can factor our equation to be

if we were to try and expand it, we would get
x²+0.75x-0.5
that's the simpliest equation with roots 1/a and 1/b where a and b are he roots of 2x²-3x=4
x²+0.75x-0.5 is answer
Answer:
37.6%
Step-by-step explanation:
P(A|B) = P(A and B) / P(B)
P(red | car) = P(red and car) / P(car)
P(red | car) = 0.32 / 0.85
P(red | car) = 0.376
Answer:
\simeq 14.94 billion dollars
Step-by-step explanation:
During the period 1994 - 2004, the 'National Income' ,(NI) of Australia grew about 5.2% per year (measured in 2003 U. S, dollars). In 1994 , the NI of Australia was $ 4 billion.
Now,
(2020 - 1994) = 26
Assuming this rate of growth continues, the NI of Australia in the year 2020 (in billion dollars) will be,
![4 \times[\frac{(100 + 5.2)}{100}}]^{26}](https://tex.z-dn.net/?f=4%20%5Ctimes%5B%5Cfrac%7B%28100%20%2B%205.2%29%7D%7B100%7D%7D%5D%5E%7B26%7D)
=![4 \times[\frac{105.2}{100}]^{26}](https://tex.z-dn.net/?f=4%20%5Ctimes%5B%5Cfrac%7B105.2%7D%7B100%7D%5D%5E%7B26%7D)
=\simeq 14.94 billion dollars (answer)
Answer:
y-4=3(x-2)
Step-by-step explanation:
y-y1=m(x-x1)
There are 4 quarts in a gallon, so do the following:
35 * 2 + 70, 70 / 2 = 35
The answer is B.