Answer:

Step-by-step explanation:
You could either do what I did in the above answer, or you could do this:

It does not matter how you write it, as long as you understand the concept!
I am joyous to assist you anytime.
The line of reflection is b
You can see it much easier if take away all the clutter. Redraw the diagram and take way a d and especially c.
You should be left with only line b and the two triangles. You can see it much easier if you do that. Then just look at the parallel lines of the triangles. They are right across from each other.
AB = 6 cm, AC = 12 cm, CD = ?
In triangle ABC, ∠CBA = 90°, therefore in triangle BCD ∠CBD = 90° also.
Since ∠BDC = 55°, ∠CBD = 90°, and there are 180 degrees in a triangle, we know ∠DCB = 180 - 55 - 90 = 35°
In order to find ∠BCA, use the law of sines:
sin(∠BCA)/BA = sin(∠CBA)/CA
sin(∠BCA)/6 cm = sin(90)/12 cm
sin(∠BCA) = 6*(1)/12 = 0.5
∠BCA = arcsin(0.5) = 30° or 150°
We know the sum of all angles in a triangle must be 180°, so we choose the value 30° for ∠BCA
Now add ∠BCA (30°) to ∠DCB = 35° to find ∠DCA.
∠DCA = 30 + 35 = 65°
Since triangle DCA has 180°, we know ∠CAD = 180 - ∠DCA - ∠ADC = 180 - 65 - 55 = 60°
In triangle DCA we now have all three angles and one side, so we can use the law of sines to find the length of DC.
12cm/sin(∠ADC) = DC/sin(∠DCA)
12cm/sin(55°) = DC/sin(60°)
DC = 12cm*sin(60°)/sin(55°)
DC = 12.686 cm