Answer:
You are rocking this... This is correct! :D
Step-by-step explanation:
Please give me brainliest :)
Answer:
C
Step-by-step explanation:
First cuz the y-intercept is 3 so not B or D
And the slope is -2/3
so the answer is C.
i'm not really sure about the slope part.
Answer:
Relations B and E do not represent the function.
Step-by-step explanation:
We know that a function is a relation where each input or x-value of the X set has a unique y-value or output of the Y set.
In other words, we can not have duplicated inputs as there should be only 1 output for each input.
If we closely observe relation B, and E i.e.
- B) {(3,4), (4,5), (3,6). (6,7)}
Relation 'B' IS NOT A FUNCTION
Relation B has duplicated or repeated inputs i.e. x = 3 appears twice times. we can not have duplicated inputs as there should be only 1 output for each input.
Thus, relation B is NOT a function.
Relation 'E' IS NOT A FUNCTION
Relation E has duplicated or repeated inputs i.e. x = 4 appears twice times. we can not have duplicated inputs as there should be only 1 output for each input.
Thus, relation B is NOT a function.
Therefore, relations B and E do not represent the function.
Answer and Step-by-step explanation: <u>Standard</u> <u>form</u> of a quadratic equation is expressed as: y=ax²+bx+c, while <u>vertex</u> <u>form</u> is written as:
y=a(x-h)²+k.
The similarities between standard and vertex forms is that they show if the graph of the equation has a <u>minimum</u> (when a>0) or <u>maximum</u> (a<0) and it's easier to determine the y-intercept: for standard, the value of c is the intercept; for vertex, the value k is the intercept.
The advantage of standard form is that you can determine the product and sum of the equation's roots, which is a method to determine them.
The advantages of vertex form are: easier to find the vertex of the graph, which is the pair (h,k) and the axis of symmetry, which is the value of h.
Firstly, understand prefixes :)
giga 1000000000
mega 1000000
kilo 1000
deci 0.1
centi 0.01
milli 0.001
micro 0.000001
nano 0.000000001