Answer:
20*20+CD=400+CD
Step-by-step explanation:
Multiply
20
by
20
Answer:
D.
Step-by-step explanation:
Remember that the limit definition of a derivative at a point is:
![\displaystyle{\frac{d}{dx}[f(a)]= \lim_{x \to a}\frac{f(x)-f(a)}{x-a}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28a%29%5D%3D%20%5Clim_%7Bx%20%5Cto%20a%7D%5Cfrac%7Bf%28x%29-f%28a%29%7D%7Bx-a%7D%7D)
Hence, if we let f(x) be ln(x+1) and a be 1, this will yield:
![\displaystyle{\frac{d}{dx}[f(1)]= \lim_{x \to 1}\frac{\ln(x+1)-\ln(2)}{x-1}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%281%29%5D%3D%20%5Clim_%7Bx%20%5Cto%201%7D%5Cfrac%7B%5Cln%28x%2B1%29-%5Cln%282%29%7D%7Bx-1%7D%7D)
Hence, the limit is equivalent to the derivative of f(x) at x=1, or f’(1).
The answer will thus be D.
Answer:
EF = 1.5. DF = 2.
Step-by-step explanation:
DE is half of AB so EF is half of BC and DF is half of AC.
Answer:
There are 69120 total combinations.
Step-by-step explanation:
To find the total number of combinations, we multiply all these values. So
16 people
18 colors
12 shades
20 tertiary gradients.
How many combinations are there total?
16*18*12*20 = 69120
There are 69120 total combinations.
Answer:
I don't know, is it?
Step-by-step explanation:
Simplify