Answer: 134,061.9 dollar and 118,222.45 lb
To answer this question you need to convert each unit.
First, 1 dollar equal to 100 pennies. That mean the equation would be: <span>13,406,190 pennies x 1 dollar/100 pennies = 134,061.9 dollar
Each penny weight 4 grams and 1 lb equal to </span>453.592grams. Then the equation would be:
13,406,190 pennies x 4 grams/pennies x 1lb/453.592 grams= 118,222.45 lb
Answer:
Step-by-step explanation:
The best way to do this is to let a graphing program do it. You could do it from a chart, but a graphing program can be useful for that as well. We'll make up a mini chart here
x method y
-3 (-3)^2 + 2(-3) + 3 = 6
-2 (-2)^2 + 2(-2) + 3 = 3
-1 (-1)^2 + 2(-1) + 3 = 2
0 3
1 (1)^2 + 2(1) + 3 6
2 (2^2) + 2(2) + 3 11
3 (3)^2 +2(3) + 3 18
See the graph below.
You can pick it out from the graphs you were given.
Answer:
<em>The </em><em>SI </em><em>unit </em><em>of </em><em>density </em><em>is </em><em>g/</em><em>cm³</em><em> </em><em>or </em><em> </em><em>kg/</em><em>m³</em>
Check the picture below.
![\stackrel{\textit{\Large Areas}}{\stackrel{triangle}{\cfrac{1}{2}(6)(6)}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}\pi (3)^2}}\implies \boxed{18+4.5\pi} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{pythagorean~theorem}{CA^2 = AB^2 + BC^2\implies} CA=\sqrt{AB^2 + BC^2} \\\\\\ CA=\sqrt{6^2+6^2}\implies CA=\sqrt{6^2(1+1)}\implies CA=6\sqrt{2} \\\\\\ \stackrel{\textit{\Large Perimeters}}{\stackrel{triangle}{(6+6\sqrt{2})}~~ + ~~\stackrel{semi-circle}{\cfrac{1}{2}2\pi (3)}}\implies \boxed{6+6\sqrt{2}+3\pi}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%286%29%286%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D%5Cpi%20%283%29%5E2%7D%7D%5Cimplies%20%5Cboxed%7B18%2B4.5%5Cpi%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7Bpythagorean~theorem%7D%7BCA%5E2%20%3D%20AB%5E2%20%2B%20BC%5E2%5Cimplies%7D%20CA%3D%5Csqrt%7BAB%5E2%20%2B%20BC%5E2%7D%20%5C%5C%5C%5C%5C%5C%20CA%3D%5Csqrt%7B6%5E2%2B6%5E2%7D%5Cimplies%20CA%3D%5Csqrt%7B6%5E2%281%2B1%29%7D%5Cimplies%20CA%3D6%5Csqrt%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Perimeters%7D%7D%7B%5Cstackrel%7Btriangle%7D%7B%286%2B6%5Csqrt%7B2%7D%29%7D~~%20%2B%20~~%5Cstackrel%7Bsemi-circle%7D%7B%5Ccfrac%7B1%7D%7B2%7D2%5Cpi%20%283%29%7D%7D%5Cimplies%20%5Cboxed%7B6%2B6%5Csqrt%7B2%7D%2B3%5Cpi%7D)
notice that for the perimeter we didn't include the segment BC, because the perimeter of a figure is simply the outer borders.