1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesnalui [34]
3 years ago
10

Compare the values of the underlined digits 6300 and 530

Mathematics
1 answer:
Paha777 [63]3 years ago
4 0
I don't know what's underline but I assume it's the 300 in 6300 and the 30 in 530 so 300>30
You might be interested in
What equation is equivalent to x2 + 20x + 81 = -27? Can you show me how you got the answer please
Alla [95]

The equivalent equation is x² + 20x = -102

<h3>Simplification of quadratic equation</h3>

The equivalent equation can be obtained by factorizing or simplifying the given quadratic equation as shown below;

x² + 20x + 81 = -21

<em>collect similar terms together</em>

x² + 20x + 81 + 21 = 0

x² + 20x + 102 = 0

The equation can also be written as x² + 20x = -102

Thus, the equivalent equation is x² + 20x = -102

Learn more about simplification of quadratic equation here: brainly.com/question/1214333

4 0
2 years ago
Give the slope of each of these items
Whitepunk [10]
Where/what slopes are I talking about?
7 0
3 years ago
9341/2 scientific notation
Darya [45]
Answer: 9.34 x 10^3
Hope this helps
5 0
3 years ago
Suppose Upper F Superscript prime Baseline left-parenthesis x right-parenthesis equals 3 x Superscript 2 Baseline plus 7 and Upp
Sedaia [141]

It looks like you're given

<em>F'(x)</em> = 3<em>x</em>² + 7

and

<em>F</em> (0) = 5

and you're asked to find <em>F(b)</em> for the values of <em>b</em> in the list {0, 0.1, 0.2, 0.5, 2.0}.

The first is done for you, <em>F</em> (0) = 5.

For the remaining <em>b</em>, you can solve for <em>F(x)</em> exactly by using the fundamental theorem of calculus:

F(x)=F(0)+\displaystyle\int_0^x F'(t)\,\mathrm dt

F(x)=5+\displaystyle\int_0^x(3t^2+7)\,\mathrm dt

F(x)=5+(t^3+7t)\bigg|_0^x

F(x)=5+x^3+7x

Then <em>F</em> (0.1) = 5.701, <em>F</em> (0.2) = 6.408, <em>F</em> (0.5) = 8.625, and <em>F</em> (2.0) = 27.

On the other hand, if you're expected to <em>approximate</em> <em>F</em> at the given <em>b</em>, you can use the linear approximation to <em>F(x)</em> around <em>x</em> = 0, which is

<em>F(x)</em> ≈ <em>L(x)</em> = <em>F</em> (0) + <em>F'</em> (0) (<em>x</em> - 0) = 5 + 7<em>x</em>

Then <em>F</em> (0) = 5, <em>F</em> (0.1) ≈ 5.7, <em>F</em> (0.2) ≈ 6.4, <em>F</em> (0.5) ≈ 8.5, and <em>F</em> (2.0) ≈ 19. Notice how the error gets larger the further away <em>b </em>gets from 0.

A <em>better</em> numerical method would be Euler's method. Given <em>F'(x)</em>, we iteratively use the linear approximation at successive points to get closer approximations to the actual values of <em>F(x)</em>.

Let <em>y(x)</em> = <em>F(x)</em>. Starting with <em>x</em>₀ = 0 and <em>y</em>₀ = <em>F(x</em>₀<em>)</em> = 5, we have

<em>x</em>₁ = <em>x</em>₀ + 0.1 = 0.1

<em>y</em>₁ = <em>y</em>₀ + <em>F'(x</em>₀<em>)</em> (<em>x</em>₁ - <em>x</em>₀) = 5 + 7 (0.1 - 0)   →   <em>F</em> (0.1) ≈ 5.7

<em>x</em>₂ = <em>x</em>₁ + 0.1 = 0.2

<em>y</em>₂ = <em>y</em>₁ + <em>F'(x</em>₁<em>)</em> (<em>x</em>₂ - <em>x</em>₁) = 5.7 + 7.03 (0.2 - 0.1)   →   <em>F</em> (0.2) ≈ 6.403

<em>x</em>₃ = <em>x</em>₂ + 0.3 = 0.5

<em>y</em>₃ = <em>y</em>₂ + <em>F'(x</em>₂<em>)</em> (<em>x</em>₃ - <em>x</em>₂) = 6.403 + 7.12 (0.5 - 0.2)   →   <em>F</em> (0.5) ≈ 8.539

<em>x</em>₄ = <em>x</em>₃ + 1.5 = 2.0

<em>y</em>₄ = <em>y</em>₃ + <em>F'(x</em>₃<em>)</em> (<em>x</em>₄ - <em>x</em>₃) = 8.539 + 7.75 (2.0 - 0.5)   →   <em>F</em> (2.0) ≈ 20.164

4 0
3 years ago
I need help..................
Angelina_Jolie [31]
1.0 2.39 3.3 4.-17 5.. 15 6. -24 7. 43 8. 39 9. -11 10.-17
5 0
3 years ago
Read 2 more answers
Other questions:
  • Help me help you help us
    11·1 answer
  • I need help with D please somebody help me with the figuring out how to get the answer
    13·1 answer
  • Julie has 1.54 L of water in a large bottle for a science experiment. She pours the water into beakers. Each beaker holds 0.22 L
    15·1 answer
  • Complete the table to show a relationship that is a
    6·1 answer
  • Help me answer 1 - 24 plz
    10·1 answer
  • Find the equation of the line below. (2, 10) ) (1, 5)
    9·1 answer
  • X^2y^-1 + y / a-xy^-1
    15·1 answer
  • What is the value of x?<br> 26°<br> to<br> O<br> X<br> = [ ? ]
    8·2 answers
  • 2x -y =-2. X= 14+2y. What is the value of the system derminant
    5·1 answer
  • Help pls pls pls pls pled
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!