Answer:
Step-by-step explanation:
Let d be the perpendicular distance of the target from the person. His angle of view is a random variable
which uniformly distributed (given).
., since his field view is from
to
. That is
![f_{\Theta }\left ( \theta \right )=\frac{1}{\pi };-\pi /2](https://tex.z-dn.net/?f=f_%7B%5CTheta%20%7D%5Cleft%20%28%20%5Ctheta%20%5Cright%20%29%3D%5Cfrac%7B1%7D%7B%5Cpi%20%7D%3B-%5Cpi%20%2F2%3C%5Ctheta%20%3C%5Cpi%20%2F2%0A)
Now the distance X where the arrow strikes from the target is
Or ![x=d\tan \theta . ](https://tex.z-dn.net/?f=x%3Dd%5Ctan%20%5Ctheta%20.%0A)
Now we haver to find the distribution of
which is a function of known
.
We know the distribution of the transformation
is
.
The sum is because if we have more than one inverse functions of
.
Now, the inverse function is
. So the PDF of
is
![f_X\left (x \right )=\sum f_{\Theta }\left ( \tan^{-1}\left ( \frac{x}{d} \right )\right )\left | \frac{\mathrm{d} \tan^{-1}\left ( \frac{x}{d} \right ) }{\mathrm{d} x} \right |\\ f_X\left (x \right )=2\frac{1}{\pi }\frac{d}{d^2+x^2};0](https://tex.z-dn.net/?f=f_X%5Cleft%20%28x%20%5Cright%20%29%3D%5Csum%20f_%7B%5CTheta%20%7D%5Cleft%20%28%20%5Ctan%5E%7B-1%7D%5Cleft%20%28%20%5Cfrac%7Bx%7D%7Bd%7D%20%5Cright%20%29%5Cright%20%29%5Cleft%20%7C%20%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5Ctan%5E%7B-1%7D%5Cleft%20%28%20%5Cfrac%7Bx%7D%7Bd%7D%20%5Cright%20%29%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%20%5Cright%20%7C%5C%5C%20f_X%5Cleft%20%28x%20%5Cright%20%29%3D2%5Cfrac%7B1%7D%7B%5Cpi%20%7D%5Cfrac%7Bd%7D%7Bd%5E2%2Bx%5E2%7D%3B0%3Cx%3C%5Cinfty%20%5C%5C%20%7B%5Ccolor%7BBlue%7D%20f_X%5Cleft%20%28x%20%5Cright%20%29%3D%5Cfrac%7B2%7D%7B%5Cpi%20%7D%5Cfrac%7Bd%7D%7Bd%5E2%2Bx%5E2%7D%3B0%3Cx%3C%5Cinfty%20%7D%0A)
I do not understand "perches". If you want you can set d=1 and your distribution becomes,
![{\color{Blue} f_X\left (x \right )=\frac{2}{\pi }\frac{1}{1+x^2};0](https://tex.z-dn.net/?f=%7B%5Ccolor%7BBlue%7D%20f_X%5Cleft%20%28x%20%5Cright%20%29%3D%5Cfrac%7B2%7D%7B%5Cpi%20%7D%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%3B0%3Cx%3C%5Cinfty%20%7D%0A)
Then X measured in so called perches.