For this case we have the following function:
![f (x) = 2x ^ 2 + \frac {5} {x-2}](https://tex.z-dn.net/?f=f%20%28x%29%20%3D%202x%20%5E%202%20%2B%20%5Cfrac%20%7B5%7D%20%7Bx-2%7D)
By definition, we have that the domain of a function is given by all the values for which the function is defined. The given function is not defined when the denominator is zero.
So:
![x-2 = 0\\x = 2](https://tex.z-dn.net/?f=x-2%20%3D%200%5C%5Cx%20%3D%202)
Thus, the function is not defined at ![x = 2.](https://tex.z-dn.net/?f=x%20%3D%202.)
The domain is given by all real numbers except 2.
Answer:
The domain is given by all real numbers except 2.
Answer:
converted to what?
Step-by-step explanation:
Answer:
Step-by-step explanation:
Indicates leg lengths of 1 and√3 and hypotenuse 2, the desired ratio is √3/2
Answer:
3x
Step-by-step explanation:
Answer:
c is the answer
Step-by-step explanation:
solution
![3y + 9 \geqslant - 15](https://tex.z-dn.net/?f=3y%20%2B%209%20%5Cgeqslant%20%20-%2015)
![3( - 5) + 9 \geqslant - 15](https://tex.z-dn.net/?f=3%28%20-%205%29%20%2B%209%20%5Cgeqslant%20%20-%2015)
![- 15 + 9 \geqslant - 15](https://tex.z-dn.net/?f=%20-%2015%20%2B%209%20%5Cgeqslant%20%20-%2015)
![- 6 \geqslant - 15](https://tex.z-dn.net/?f=%20-%206%20%5Cgeqslant%20%20-%2015)
therefore the equation is not true