Answer:
See I don't know the Answer but I Need points to ask question so Sorry
Step-by-step explanation:
Answer:
2nd option
Step-by-step explanation:
- 5 =
← in the form 
The average rate of change for the height of the plant measured in centimeters per day between day 0 and day 20 is 1.32 cm per day.
<h3>What is average height?</h3>
The average height is the ratio of change in height of the plant and the time taken taken for that change.
Given is the height of a plant in centimeters is modeled as a function of time, in days.
For day 0, the height is 18cm and the height for day 20 is 42 cm, then the average height change is
height per day = 42 - 18/ 20 -0
height per day = 1.2 cm/day
Thus, the average height of plant is 1.2 cm/day.
Learn more about average height.
brainly.com/question/16490045
#SPJ1
Answer:
OCTAGON for question 1
Step-by-step explanation:
that's it an eight sided polygon is an octagon
Answer:
Option d) 5 to the power of negative 5 over 6 is correct.
![\dfrac{\sqrt[3]{\bf 5} \times \sqrt{\bf 5}}{\sqrt[3]{\bf 5^{\bf 5}}}= 5^{\frac{\bf -5}{\bf 6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B%5Cbf%205%7D%20%5Ctimes%20%5Csqrt%7B%5Cbf%205%7D%7D%7B%5Csqrt%5B3%5D%7B%5Cbf%205%5E%7B%5Cbf%205%7D%7D%7D%3D%205%5E%7B%5Cfrac%7B%5Cbf%20-5%7D%7B%5Cbf%206%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.
ie, 
Step-by-step explanation:
Given that cube root of 5 multiplied by square root of 5 over cube root of 5 to the power of 5.
It can be written as below
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}} \times 5^{\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%20%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{1}{3}+\frac{1}{2}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B1%7D%7B3%7D%2B%5Cfrac%7B1%7D%7B2%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= \dfrac{5^{\frac{2+3}{6}}}{5^{\frac{5}{3}}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%20%5Cdfrac%7B5%5E%7B%5Cfrac%7B2%2B3%7D%7B6%7D%7D%7D%7B5%5E%7B%5Cfrac%7B5%7D%7B3%7D%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5}{6}} \times 5^{\frac{-5}{3}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5%7D%7B6%7D%7D%20%5Ctimes%205%5E%7B%5Cfrac%7B-5%7D%7B3%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{\sqrt[3]{5^5}}= 5^{\frac{5-10}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B%5Csqrt%5B3%5D%7B5%5E5%7D%7D%3D%205%5E%7B%5Cfrac%7B5-10%7D%7B6%7D%7D)
![\dfrac{\sqrt[3]{5} \times \sqrt{5}}{5^5}= 5^{\frac{-5}{6}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B3%5D%7B5%7D%20%5Ctimes%20%5Csqrt%7B5%7D%7D%7B5%5E5%7D%3D%205%5E%7B%5Cfrac%7B-5%7D%7B6%7D%7D)
Above equation can be written as 5 to the power of negative 5 over 6.