<em>Refer</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>attachment</em>
Answer:
(4b-1)*(8a-7)
Step-by-step explanation:
Solution
- The solution steps are given below:

Final Answer
y = 13.14%
The screenshots of the solution are:
Answer:
Neither
Step-by-step explanation: