Answer:
See the attached figure which represents the problem.
As shown, AA₁ and BB₁ are the altitudes in acute △ABC.
△AA₁C is a right triangle at A₁
So, Cos x = adjacent/hypotenuse = A₁C/AC ⇒(1)
△BB₁C is a right triangle at B₁
So, Cos x = adjacent/hypotenuse = B₁C/BC ⇒(2)
From (1) and (2)
∴ A₁C/AC = B₁C/BC
using scissors method
∴ A₁C · BC = B₁C · AC
Answer: Coterminal Angles are angles who share the same initial side and terminal sides. Finding coterminal angles is as simple as adding or subtracting 360° or 2π to each angle, depending on whether the given angle is in degrees or radians.
Answer:
growth
Step-by-step explanation:
This is of the form
y = ab^x where a is the initial value and b is either growth or decay
if b > 1 then it is growth
b <1 it is decay
a = .2
b = 4
Since b>1 it is growth
Answer:
2x - 10 = 10 - 3x
Simplifying
2x + -10 = 10 + -3x
Reorder the terms:
-10 + 2x = 10 + -3x
Solving
-10 + 2x = 10 + -3x
Solving for variable 'x'.
Move all terms containing x to the left, all other terms to the right.
Add '3x' to each side of the equation.
-10 + 2x + 3x = 10 + -3x + 3x
Combine like terms: 2x + 3x = 5x
-10 + 5x = 10 + -3x + 3x
Combine like terms: -3x + 3x = 0
-10 + 5x = 10 + 0
-10 + 5x = 10
Add '10' to each side of the equation.
-10 + 10 + 5x = 10 + 10
Combine like terms: -10 + 10 = 0
0 + 5x = 10 + 10
5x = 10 + 10
Combine like terms: 10 + 10 = 20
5x = 20
Divide each side by '5'.
x = 4
Simplifying
x = 4
Choice A is the correct answer