Answer:
Explanation:
y_1 = (3 mm) sin(x - 3t)
comparing it with standard wave equation
y = A sin( ωt-kx )
we see
ω = -3 , k = -1
velocity = ω / k
= 3
y_2 = (6 mm) sin(2x - t)
we see
ω = -1 , k = -2
velocity = ω / k
= .5
y_3 = (1 mm) sin(4x - t)
we see
ω = -1 , k = -4
velocity = ω / k
= .25
y_4 = (2 mm) sin(x - 2t)
we see
ω = -2 , k = -1
velocity = ω / k
= 2
So greatest velocity to lowest velocity
y_1 = (3 mm) sin(x - 3t) , y_4 = (2 mm) sin(x - 2t) ,y_2 = (6 mm) sin(2x - t) , y_3 = (1 mm) sin(4x - t)
b )
Given the mass per unit length of wire the same , velocity is proportional to
√ T , where T is tension
so in respect of tension in the wire same order will exist for highest to lowest tension .
Here is the answer. The microscope parts that should routinely be adjusted to control the light source and provide optimal illumination of the specimen are the following: <span>light source; condenser; specimen; objective lens; ocular lens. Hope this answers your question.</span>
Answer: 1.5×10^10 N/C
Explanation:
E= F/q
Where E= magnitude of the electric field
F= force of attraction
q= charge of the given body
Given F= 6.5×10^-8 N
q= 4.3× 10^-18 C
Therefore, E = 6.5×10 ^-8/ 4.3×10^-18
E = 1.5×10^10 N/C
Answer:
Distance = 25000000 miles
Time = 50 hours
Explanation:
Venus is the closest planet to Earth. It is about 25 million miles away from Earth. Its precise distance depends on where both Venus and Earth are in their respective orbits
Given that
Speed V = 500000 mph
Distance d = 25 000,000 miles
Speed = distance/ time
Time = distance/speed
Time = 25000000/500000
Time = 50 hours
It will therefore take 50 hours to get to venus at that speed.
The answer is <span>A) Velocity describes speed with direction.
Speed can be in any direction </span>