Answer: 1.76 s
Explanation:
We have the following data:
is the total mass of the bike and the rider
is the initial velocity
is the force applied to the brakes
Firstly, we will find the acceleration
with the following equation:
(1)
Isolating
:
(2)
(3)
(4) This is the magnitude of the acceleration, however, since the final velocity is 0 m/s, this means the direction is negative
Hence:
(5)
On the other hand, with the following equation we can find the time
:
(6)
Where:
is the final velocity (the bike stops)
Isolating
:
(7)
(8)
Finally:
This iste time it takes to the bike to stop
The answer is B) They do NOT require a medium to travel.
The deceleration of the rocket sled if it comes to rest in 1.1 s from a speed of 1000 km/h is
.
The acceleration in opposite direction is known as the deceleration. Basically the deceleration is negative value of the acceleration since the negative sign depicts its opposite in direction.
The given data:
time, t = 1.1 s
initial speed, u = 1000 km/h = 
final speed, v = 0 m/s
So we will be using the equation of motion, that is,
v = u + at



Hence , the deceleration of the rocket is
.
To learn more about Attention here:
brainly.com/question/28500124
#SPJ4
Explanation :
Takumi wears sunscreen and a hat each time he works in the yard. This is to protect himself with the strong radiation coming from the sun. UV rays that are coming from the sun are the main cause of skin cancer.
Stochastic effects are the effects that are caused by chance. Cancer is one of the main stochastic effects.
So, the correct option is (b) "the severity of stochastic effects, such as cancer".
Answer:
(a)F= 3.83 * 10^3 N
(b)Altitude=8.20 * 10^5 m
Explanation:
On the launchpad weight = gravitational force between earth and satellite.
W = GMm/R²
where R is the earth radius.
Re-arranging:
WR² / GM = m
m = 4900 * (6.3 * 10^6)² / (6.67 * 10^-11 * 5.97 * 10^24) = 488 kg
The centripetal force (Fc) needed to keep the satellite moving in a circular orbit of radius (r) is:
Fc = mω²r
where ω is the angular velocity in radians/second. The satellite completes 1 revolution, which is 2π radians, in 1.667 hours.
ω = 2π / (1.667 * 60 * 60) = 1.05 * 10^-3 rad/s
When the satellite is in orbit at a distance (r) from the CENTRE of the earth, Fc is provided by the gravitational force between the earth and the satellite:
Fc = GMm/r²
mω²r = GMm / r²
ω²r = GM / r²
r³ = GM/ω² = (6.67 * 10^-11 * 5.97 * 10^24) / (1.05 * 10^-3)²
r³ = 3.612 * 10^20
r = 7.12 * 10^6 m
(a)
F = GMm/r²
F=(6.67 * 10^-11 * 5.97 * 10^24 * 488) / (7.12 * 10^6 )²
F= 3.83 * 10^3 N
(b) Altitude = r - R = (7.12 * 10^6) - (6.3 * 10^6) = 8.20 * 10^5 m