Answer:
b. x² + 8x + 12 =
1. use the factoring X (see attachment)
2. 6 x 2 = 12; 6 + 2 = 12
3. (x + 6)(x + 2) = 0
4. x = -6, -2
c. x² + 13x + 12 =
1. 12 x 1 = 12; 12 + 1 = 13
2. (x + 12)(x + 1) = 0
3. x = -12, -1
c. x² + x - 12 =
1. 4 · (-3) = -12; 4 - 3 = 1
2. (x +4)(x - 3) = 0
3. x = -4, 3
f. x² + 15x + 36 =
1. 12 x 3 = 36; 12 + 3 = 15
2. (x + 12)(x + 3) = 0
3. x = -12, -3
hope this helps :)
Answer:
(ab - 6)(2ab + 5)
Step-by-step explanation:
Assuming you require the expression factorised.
2a²b² - 7ab - 30
Consider the factors of the product of the coefficient of the a²b² term and the constant term which sum to give the coefficient of the ab- term
product = 2 × - 30 = - 60 and sum = - 7
The factors are - 12 and + 5
Use these factors to split the ab- term
= 2a²b² - 12ab + 5ab - 30 ( factor the first/second and third/fourth terms )
= 2ab(ab - 6) + 5(ab - 6) ← factor out (ab - 6) from each term
= (ab - 6)(2ab + 5) ← in factored form
Answer:
Step-by-step explanation:
lets have one side =a
P=3a+a+(17+a)=52
P=5a+17=52
5a=52-17
5a=35
a=7
second side=21
third side=24
Answer:
6 roots
Step-by-step explanation:
f(x)=3x^6+2x^5+x4-2x^3
The number of roots is determined by the degree of the polynomial. They may be real or complex.
Since this is a 6th degree polynomial, it will have 6 roots
f(x)=3x^6+2x^5+x4-2x^3