Neurons in the hypothalamus regulate the activity of secretory cells in the anterior pituitary gland by releasing hormones. Pituitary gland basically store the hormones which is produce by the hypothalamus.
Hypothalamus connect the nervous and endocrine systems by way of the pituitary gland. Both are connected directly to the pituitary gland by a thin stalk which is called infundibulum.
Its main function is to secrete releasing hormones and inhibiting hormones that stimulate the production of hormones in the anterior pituitary. FSH and LH both are produce and secret gonadotropins which regulated by the hypothalami releasing hormone, GnRH. These are the releasing hormones which control the release of another hormone.
To learn more about the infundibulum here
brainly.com/question/17447860
#SPJ4
I think it’s evaporation proton
Ecosystem. it is defined as a biological community of interacting organism and their physical environment.
Answer:
c. Ductus venosus, vena cava, heart, ductus arteriosus, arteries
Explanation:
The circulatory system consists of the heart and blood vessels. In a fetus, the circulation of blood is different from circulation after delivery largely due to the fact that the lungs are not in use, rather, the fetus obtains oxygen and nutrients from the mother through the placenta and the umbilical cord.
Blood from the placenta is carried to the fetus by the umbilical vein. While some of this blood enters the fetal ductus venosus and is carried to the inferior vena cava, some others enter the liver. The blood from the inferior vena cava then moves into the right atrium of the heart. The foramen ovale, an opening between the right and left atrium in the fetus directs most of the blood flow from the right into the left atrium, thereby, bypassing pulmonary circulation. Most of the blood from the right atrium flows into the left ventricle and is pumped through the aorta to the rest of the body.
Some of the blood from the right atrium however, enters into the right ventricle and is pumped into the pulmonary artery. The ductus arteriosus which is a special connection between the pulmonary artery and the aorta in a fetus, directs most of this blood away from the lungs and into the arteries.
Answer:
What are stinkhorns? Stinkhorns are mushrooms that are found from the tropics to more temperate regions such as Wisconsin. They can suddenly appear in mulch, lawns, and areas with bare soil. These visually-shocking fungi get their common name from their characteristic, unpleasant odor. Although they are often unwanted additions to home gardens, stinkhorns do not cause plant disease. Because stinkhorns can grow on dead organic material, they actually are beneficial in that they contribute to the recycling of plant debris into nutrients that improve soil fertility and can be used by garden plants.
What do stinkhorns look like? Stinkhorns grow into various shapes, but they are bestknown for looking like horns or penises. A few species grow several appendages, resulting in an octopus-like appearance. Some species have a veil attached below the cap that resembles a lacey skirt flowing from the mushroom’s hollow stalk. Stinkhorns can range in color from white, beige, and olive to bright orange or red with black accents. The tips of mature stinkhorns are usually coated in a spore-containing slime. Gardeners often discover immature stinkhorns as they dig in the soil. The immature forms appear as whitish to pink or purple, egg-shaped masses. Stinkhorns develop rapidly sometimes growing up to four to six inches per hour, and can generate enough force to break through asphalt.
Where do stinkhorns come from? Stinkhorns are often first introduced into a garden in organic materials (e.g., soils and mulches) that contain microscopic hyphae (i.e., fungal threads) of stinkhorn fungi. Once stinkhorns mature, they produce a pungent, off-putting odor that is reminiscent of rotting flesh or dung. This smell may disgust people, but it attracts insects, particularly flies. Flies and other insects eat the slimy material at the tips of stinkhorns and carry spores in this slime to new locations as they move around in the environment. In many ways, this process is comparable to the distribution of pollen by bees (but of course without the more appealing scents associated with most flowers).