An ion is created by the transfer of electrons. The metals give away the elections and become positively charged. The non - metals take on electrons.
Balance.
So an ion is any atom that either gives away or takes on electrons.
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
Answer:
Sam will do 1152 J of work to stop the boat
Explanation:
Work: This is defined as the product of force and distance, the S.I unit of work is Joules. At any point in science, during calculation Energy and worked can be interchange because they have the same unit.
E = W = 1/2mv²................ Equation 1
Where E = energy, W = work, m = mass, v = velocity.
Given: m = 900 kg, v = 1.6 m/s
Substituting these values into equation 1
W = 1/2(900)(1.6)²
W = 450×2.56
W = 1152 J.
Therefore Sam will do 1152 J of work to stop the boat
Answer:
Capacitance, C = 26.1 picofarad
Explanation:
It is given that,
Side of square, x = 4.3546 cm = 0.043546 m
Distance between electrodes, d = 0.6408 mm = 0.0006408 m
Voltage, V = 73.68 V
Capacitance of parallel plates is given by :



or
C = 26.1 picofarad
So, the capacitance of the capacitor is 26.1 picofarad. Hence, this is the required solution.
It is kind of an optical illusion it is called <span>optical flow.</span>