Take a look at a simple reaction like the one below:
In this reaction some reactant A is turned into some product B. The rate of reaction can be represented by a decrease in concentration of A over time or as the increase of B over time. This is written:
Answer:
D) 15s
Explanation:
let Te be the period of the block-spring system on earth and Tm be the period of the same system on the moon.let g1 be the gravitational acceleration on earth and g2 be the gravitational acceleration on the moon.
the period of a pendulum is given by:
T = 2π√(L/g)
so on earth:
Te = 2π√(L/g1)
= 6s
on the moon;
Tm = 2π√(L/g2)
since g2 = 1/6 g1 then:
Tm = 2π√(L/(1/6×g1))
= √(6)×2π√(L/(g1))
and 2π√(L/(g1)) = Te = 6s
Tm = (√(6))×6 = 14.7s ≈ 15s
Therefore, the period of the block-spring system on the moon is 15s.
Since g is constant, the force the escaping gas exerts on the rocket will be 10.4 N
<h3>
What is Escape Velocity ?</h3>
This is the minimum velocity required for an object to just escape the gravitational influence of an astronomical body.
Given that the velocity of a 0.25kg model rocket changes from 15m/s [up] to 40m/s [up] in 0.60s. The gravitational field intensity is 9.8N/kg.
To calculate the force the escaping gas exerts of the rocket, let first highlight all the given parameters
- Mass (m) of the rocket 0.25 Kg
- Initial velocity u = 15 m/s
- Final Velocity v = 40 m/s
- Gravitational field intensity g = 9.8N/kg
The force the gas exerts of the rocket = The force on the rocket
The rate change in momentum of the rocket = force applied
F = ma
F = m(v - u)/t
F = 0.25 x (40 - 15)/0.6
F = 0.25 x 41.667
F = 10.42 N
Since g is constant, the force the escaping gas exerts on the rocket is therefore 10.4 N approximately.
Learn more about Escape Velocity here: brainly.com/question/13726115
#SPJ1